Skip to main content

Dispersion Models of Microbial Bioaerosols

  • Chapter
Atmospheric Microbial Aerosols
  • 200 Accesses

Abstract

Many bioaerosol models have been prepared ranging from compartment models (Forrester, 1961; Atkins, 1969), describing the downwind concentrations and flux (i.e., D/P transfer rate where D/P is a droplet/particle; D/P/M−2 s−1) of bioaerosols from a source that contributes to the loading of the bulk atmosphere (Fig. 9.1) through comprehensive, theoretical, and multiple regression models characterizing the factors that affect the survival of airborne microbes (Larson, 1973) [Eq. (9.1)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins, G. L. 1969. Multicompartment models for biological systems. Methuen & Co. Ltd., London, p. 153.

    Google Scholar 

  • Bausum, H. T., S. A. Schaub, M. J. Small, J. A. Highfill, and C. A. Sorber. 1976. Bacterial aerosols resulting from spray irrigation with wastewater. Technical Report 7602. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Berendt, R. F., E. L. Dorsey, and H. J. Hearn. 1972. Viricidal properties of light and SO,. I. Effect of aerosolized Venezuelan equine encephalomyelitis virus. Proc. Soc. Exp. Biol. Med. 130:1–5.

    Google Scholar 

  • Briggs, W. K. W. 1969. “Plume rise.” U.S. A.E.C., Technical Information Division-25075, Dept. of Communications, Springfield, VA.

    Google Scholar 

  • Cox, C. S. 1987. The aerobiological pathway of microorganisms. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Cox, C. S., and L. J. Goldberg. 1972. Aerosol survival of Pasteurella tularensis and the influence of relative humidity. Appl. Microbiol. 23(1):1–3.

    PubMed  CAS  Google Scholar 

  • Dallavalle, J. M. 1948. Micromeritics. The technology of fine particles. Pitman Publishing Corp., New York.

    Google Scholar 

  • Ehrlich, R., and S. Miller. 1973. Survival of airborne Pasteurella tularensis at different atmospheric temperatures. Appl. Microbiol. 25(3):369–372.

    PubMed  CAS  Google Scholar 

  • Ferry, R. M., W. F. Brown, and E. B. Damon. 1958. Studies on the loss of viability of stored bacteria aerosols. II. Death rates of several non-pathogenic organisms in relation to biological and structural characteristics. J. Hyg. 56:125–150.

    Article  Google Scholar 

  • Forrester, J. W. 1961. Industrial dynamics. M.I.T. Press, Cambridge, MA.

    Google Scholar 

  • Goldberg, L. J., H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny. 1958. The use of a rotating drum for the study of aerosols over extended periods of time. Amer. J. Hyg. 68:85–93.

    PubMed  CAS  Google Scholar 

  • Graham, D. C., C. E. Quinn, I. A. Sells, and M. D. Harrison. 1979. Survival of strains of Soft Rot Coliform bacteria on microthreads exposed in the laboratory and in the open air. J. Appl. Bacteriol. 46:367–376.

    Article  Google Scholar 

  • Hanna, S. R., G. A. Briggs, and R. P. Hosker, Jr. (eds.). 1982. Handbook on atmospheric diffusion. P102. DOE/TIC-11223. Technical Information Center, Department of Energy, Washington, DC.

    Google Scholar 

  • Hinds, W. C. 1982. Aerosol Technology. John Wiley & Sons, New York, p. 424.

    Google Scholar 

  • Larson, E. W. 1973. Environmental variables and microbial survival. Pp. 81–86. In J. F. Ph. Hers and K. C. Winkler (eds.), Airborne transmission and airborne infection. Oosthoek Publishing Co., Utrecht, The Netherlands.

    Google Scholar 

  • Lighthart, B. 1973. Survival of airborne bacteria in a high urban concentration of carbon monoxide. Appl. Environ. Microbiol. 25(1):86–91.

    CAS  Google Scholar 

  • Lighthart, B. 1989. A statistical model of laboratory death rate measurements for airborne bacteria. Aerobiology 5:138–144.

    Article  Google Scholar 

  • Lighthart, B., and A. S. Frisch, 1976. Estimation of viable airborne microbes downwind from a point source. Appl. Environ. Microbiol. 31(5):700–704.

    PubMed  CAS  Google Scholar 

  • Lighthart, B., V. E. Hiatt, and A. T. Rossano Jr. 1971. The survival of airborne Serratia marscensens in urban concentration of sulfur dioxide. Air Pollut. Control Assoc. 21(10):639–642.

    CAS  Google Scholar 

  • Lighthart, B., and J. Kim. 1989. Simulation of airborne microbial droplet transport. Appl. Environ. Microbiol. 55(9):2349–2355.

    PubMed  CAS  Google Scholar 

  • Lighthart, B., and A. J. Mohr. 1987. Estimating downwind concentrations of viable airborne microorganisms in dynamic atmospheric conditions. Appl. Environ. Microbiol. 53(7):1580–1583.

    PubMed  CAS  Google Scholar 

  • Lighthart, B., B. T. Shaffer, B. Marthi, and L. Ganio. 1991. Trajectory of aerosol droplets from a sprayed bacterial suspension. Appl. Environ. Microbiol. 57(4):1006–1012.

    PubMed  CAS  Google Scholar 

  • Lindow, S. E., G. R. Knudsen, R. J. Seidler, M. V. Walter, V. W. Lambou, P. S. Amy, D. Schmedding, V. Prince, and S. Hern. 1988. Aerial dispersal and epiphytic survival of Pseudomonas syringae during a pretest for the release of genetically engineered strains into the environment. Appl. Environ. Microbiol. 54:1557–1563.

    PubMed  CAS  Google Scholar 

  • Mohr, A. J. 1984. Doctoral dissertation. Utah State University.

    Google Scholar 

  • Logan, UT, Pasquill, F. 1974. Atmospheric diffusion, 2nd. ed. John Wiley & Sons, New York.

    Google Scholar 

  • Peterson, E. W., and B. Lighthart. 1977. Estimation of downwind viable airborne microbes from a wet cooling tower-Including settling. Microbial Ecol. 4:67–79.

    Article  Google Scholar 

  • Poon, C.P.C. 1966. Studies on the instantaneous death of airborne Escherichia coli. Amer. J. Epidemiol. 84:1–9.

    CAS  Google Scholar 

  • Poon, C.P.C. 1968. Viability of long-storaged airborne bacterial aerosols. J. Sanitary Eng. Div., Proc. Amer. Soc. Civil Eng. SA6:1137–1146.

    Google Scholar 

  • Shaw, D. T. 1978. Fundamentals of aerosol science. John Wiley & Sons, New York.

    Google Scholar 

  • Smith, M. 1968. Recommended guide for the prediction of the dispersion of airborne effluents. American Society of Mechanical Engineering, New York.

    Google Scholar 

  • van Dop, H., F. T. M. Nieuwstadt, and J. C. R. Hunt. 1985. Random walk models for particle displacements in inhomogeneous unsteady turbulent flows. Phys. Fluids 28:1639–1653.

    Article  Google Scholar 

  • Webb, S. J. 1959. Factors affecting the viability of air-borne bacteria. I. Bacteria aerosolized from distilled water. Can. J. Microbiol. 5:649–669.

    Article  Google Scholar 

  • Webb, S. J. 1960. Factors affecting the viability of air-borne bacteria. III. The role of bonded water and protein structure in the death of air-borne cells. Can. J. Microbiol. 6:89–105.

    Article  PubMed  CAS  Google Scholar 

  • Webb, S. J. 1961a. Factors affecting its E viability of air-borne bacteria. IV. The inactivation & reactivation of airbonding Serratia marcuscans by ultraviolet & visable light. Can. J. Microbiol. 7:607–619.

    Article  CAS  Google Scholar 

  • Webb, S. J. 1961b. Factor affector the viability of air-bonding bacteria V. The effect of dessication on some metabolic systems of Escherichia coli. Can. J. Microbiol. 7:621–631.

    Article  CAS  Google Scholar 

  • Wright, D. N., and G. D. Bailey. 1969. Effect of relative humidity on the stability of Mycoplasma pneumoniae exposed to simulated solar ultraviolet and to visible radiation. Can. J. Microbiol. 15:1449–1452.

    Article  PubMed  CAS  Google Scholar 

  • Wright, D. N., G. D. Bailey, and L. J. Goldberg. 1969. Effect of temperature on survival of airborne Mycoplasma pneumoniae. J. Bacteriol. 99(2):491–495.

    PubMed  CAS  Google Scholar 

  • Wright, D. N., G. D. Bailey, and M. T. Hatch. 1968. Survival of airborne Mycoplasma as affected by relative humidity. J. Bacteriol. 95(1):251–252.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall, Inc.

About this chapter

Cite this chapter

Lighthart, B. (1994). Dispersion Models of Microbial Bioaerosols. In: Lighthart, B., Mohr, A.J. (eds) Atmospheric Microbial Aerosols. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6438-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6438-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6440-5

  • Online ISBN: 978-1-4684-6438-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics