Skip to main content

Integral Representation of Functionals Defined on Sobolev Spaces

  • Chapter
Composite Media and Homogenization Theory

Abstract

We give an integral representation result for functionals defined on Sobolev spaces; more precisely, for a functional F, we find necessary and sufficient conditions that imply the integral representation formula

$$ F(u,\,B) = \int_B {f(x,\,Du)\,dx.} $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. ALBERTI: A Lusin type theorem for gradients. Preprint Scuola Normale Superiore, Pisa (1990).

    Google Scholar 

  2. G. ALBERTI: Paper in preparation.

    Google Scholar 

  3. L. AMBROSIO & G. BUTTAZZO: Weak lower semicontinuous envelope of junctionals defined on a space of measures. Ann. Mat. Pura Appl., 150 (1988), 311–340.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. APPELL: The Superposition Operator in Function Spaces. A Survey. Book in preparation.

    Google Scholar 

  5. G. BOTTARO & P. OPPEZZI: Rappresentazione con integrali multipli di funzionali dipendenti da funzioni a valori in uno spazio di Banach. Ann. Mat. Pura Appl., 139(1985), 191–225.

    Article  MathSciNet  Google Scholar 

  6. G. BOUCHITTE: Représentation intégrale de fonctionnelles convexes sur un espace de mesures. Ann. Univ. Ferrara, 33(1987), 113–156.

    MathSciNet  MATH  Google Scholar 

  7. G. BOUCHITTE & G.BUTTAZZO: New lower semicontinuity results for non convex fUnctionals defined on measures. Nonlinear Anal., (to appear).

    Google Scholar 

  8. G. BOUCHITTE & G. BUTTAZZO: Non convex functional defined on measures: integral representation and relaxation. Paper in preparation.

    Google Scholar 

  9. G. BOUCHITTE & M. VALADIER: Integral representation of convex functionals on a space of measures. J. Funct. Anal., 80 (1988), 398–420.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. BOUCHITTE & M. VALADIER: Multifonctions s.c.i. et régularisée s.c.i. essentielle. Fonctions de mesure dans le cas sous linéaire. Proceedings “Congrès Franco-Québécois d’Analyse Non Linéaire Appliquée”, Perpignan, June 22–26,1987, Bordas, Paris (1989).

    Google Scholar 

  11. G. BUTTAZZO: Semicontinuity, Relaxationand Integral Representation in the Calculus of Variations. Pitman Res. Notes Math. Ser. 207, Longman, Harlow (1989).

    Google Scholar 

  12. G. BUTTAZZO: Semicontinuity, relaxation, and integral representation problems in the calculus of variations. Notes of a series of lectures held at CMAF of Lisbon in November-December 1985. Printed by CMAF, Lisbon (1986).

    Google Scholar 

  13. G. BUTTAZZO & G. DAL MASO: Integral representation on W 1,α(Ω)and BV(Ω) of limits of variational integrals. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 66 (1979), 338–343.

    MathSciNet  MATH  Google Scholar 

  14. G. BUTTAZZO & G. DAL MASO: On Nemyckii operators and integral representation of local functionals. Rend. Mat., 3 (1983), 491–509.

    MathSciNet  Google Scholar 

  15. G. BUTTAZZO & G. DAL MASO: A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand. J. Math. Pures Appl., 64 (1985), 337–361.

    MathSciNet  Google Scholar 

  16. G. BUTTAZZO & G. DAL MASO: Integral representation and relaxation of local functionals. Nonlinear Anal., 9 (1985), 512–532.

    Google Scholar 

  17. G. DAL MASO: Integral representation on BV(Ω)of Γ-limits of variational integrals. Manuscripta Math., 30 (1980), 387–413.

    MATH  Google Scholar 

  18. G. DAL MASO: On the integral representation of certain local functionals. Ricerche Mat., 32 (1983), 85–131.

    MathSciNet  MATH  Google Scholar 

  19. G. DAL MASO & L. MODICA: A general theory of variational integrals. Quaderno della Scuola Normale Superiore “Topics in Functional Analysis 1980–81”, Pisa (1982), 149–221.

    Google Scholar 

  20. E. DE GIORGI & L. AMBROSIO & G. BUTTAZZO: Integral representation and relaxation for junctionals defined on measures. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 81 (1987), 7–13.

    MATH  Google Scholar 

  21. L. DREWNOWSKI & W. ORLICZ: On orthogonally additive junctionals. Bull. Polish Acad. Sci. Math., 16 (1968), 883–888.

    MathSciNet  Google Scholar 

  22. L. DREWNOWSKI & W. ORLICZ: Continuity and representation of orthogonally additive junctionals. Bull. Polish Acad. Sci.Math., 17 (1969), 647–653.

    MathSciNet  MATH  Google Scholar 

  23. F. FERRO: Integral characterization of junctionals defined on spaces of BV functions. Rend. Sem. Mat. Univ. Padova, 61 (1979), 177–203.

    MathSciNet  MATH  Google Scholar 

  24. A. FOUGERES & A. TRUFFERT: Δ -integrands and essential infimum, Nemyckii representation of l.s.c. operators on decomposable spaces and Radon-Nikodym-Hiai representation of measure junctionals. Preprint A.V.A.M.A.C. University of Perpignan, Perpignan (1984).

    Google Scholar 

  25. A. FOUGERES & A. TRUFFERT: Applicationsdes méthodes de représentation intégrale et d’approximation inf-convolutives à l’épi-convergence. Preprint A.V.A.M.A.C. University of Perpignan, Perpignan (1985).

    Google Scholar 

  26. N. FRIEDMAN & M. KATZ: Additive junctionals of L p spaces. Canad. J. Math., 18 (1966), 1264–1271.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. GILBARG & N.S. TRUDINGER: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1977).

    MATH  Google Scholar 

  28. F. HIAI: Representation of additive junctionals on vector valued normed Kothe spaces. Kodai Math. J., 2 (1979), 300–313.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. MARCUS & V.J. MIZEL: Nemyckii operators on Sobolev spaces. Arch. Rational Mech. Anal., 51 (1973), 347–370.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. MARCUS & V.J. MIZEL: Extension theorems for nonlinear disjointly additive functionals and operators on Lebesgue spaces, with applications. Bull. Amer. Math. Soc., 82 (1976), 115–117.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. MARCUS & V.J. MIZEL: Extension theorems of Hahn-Banach type for nonlinear disjointly additive junctionals and operators in Lebesgue spaces. J. Funct. Anal., 24 (1977), 303–335.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. MARCUS & V.J. MIZEL: Representation theorems jor nonlinear disjointly additive junctionals and operators on Sobolev spaces. Trans. Amer. Math. Soc., 228 (1977), 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. MARCUS & V.J. MIZEL: A characterization of first order nonlinear partial differential operators on Sobolev spaces. J. Funct. Anal., 38 (1980), 118–138.

    Article  MathSciNet  MATH  Google Scholar 

  34. V.J. MIZEL: Characterization of nonlinear transformations possessing kernels. Canad. J. Math., 22 (1970), 449–471.

    Article  MathSciNet  MATH  Google Scholar 

  35. V.J. MIZEL & K. SUNDARESAN: Representation of vector valued nonlinear junctions. Trans. Amer. Math. Soc., 159 (1971), 111–127.

    Article  MathSciNet  MATH  Google Scholar 

  36. C.B. MORREY: Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math., 2 (1952), 25–53.

    Google Scholar 

  37. C. SBORDONE: Sulla caratterizzazione degli operatori differenziali del 2° ordine di tipo ellittico. Rend. Accad. Sci. Fis. Mat. Napoli, 41(1975), 31–45.

    MathSciNet  MATH  Google Scholar 

  38. S. SPAGNOLO: Una caratterizzazione degli operatori differenziali autoaggiunti del 2° ordine a coefficienti misurabili e limitati. Rend. Sem. Mat. Univ. Padova, 38 (1967), 238–257.

    MathSciNet  Google Scholar 

  39. I.V. SRAGIN: Abstract Nemyckii operators are locally defined operators. Soviet Math. Dokl., 17 (1976), 354–357.

    Google Scholar 

  40. M. VALADIER: Fonctions et opérateurs sur les mesures. C. R. Acad. Sci. Paris, I-304(1987), 135–137.

    Google Scholar 

  41. W.A. WOYCZYNSKI: Additive functionalson Orlicz spaces. Colloq. Math., 19 (1968), 319–326.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Boston

About this chapter

Cite this chapter

Alberti, G., Buttazzo, G. (1991). Integral Representation of Functionals Defined on Sobolev Spaces. In: Dal Maso, G., Dell’Antonio, G.F. (eds) Composite Media and Homogenization Theory. Progress in Nonlinear Differential Equations and Their Applications, vol 5. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6787-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6787-1_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6789-5

  • Online ISBN: 978-1-4684-6787-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics