Skip to main content

Pineal Function in Mammals and Birds is Altered by Earth-Strength Magnetic Fields

  • Chapter
Electromagnetic Fields and Circadian Rhythmicity

Part of the book series: Circadian Factors in Human Health and Performance ((CFHH))

Abstract

The discovery of the magnetic sensitivity of the mammalian pineal gland (electrophysiology: Semm et al., 1980; biochemistry: Welker et al., 1983) initiated for the first time the possibility of measuring influences of the magnetic environment in the central nervous system. We found this remarkable property of the pineal gland during a research program dealing with electrophysiological characteristics of mammalian pinealocytes. However, we were mainly interested in the physiological basis of the magnetic compass in migrating and homing animals. After it became clear that the pineal is not directly involved in magnetic compass orientation (Maffei et al., 1983; Semm et al., 1987), we used the magnetic sensitivity of the gland as a tool for finding other nerve cells that might be involved in magnetic orientation (Beason and Semm, 1987; Semm et al., 1984; Semm and Demaine, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardasano, J.L., Meyer, A J., Picazo, L. (1985): Ultrastructure of the pineal cells of the homing pigeon. J Hirnforschumg 26: 471–475

    Google Scholar 

  • Beason, R.C., Semm, P. (1987): Magnetic responses of the trigeminal nerve system of the bobolink (Dolichonyx oryzivorus). Neurosci Lett 80: 229

    Article  Google Scholar 

  • Bliss, V.L., Heppner, F.H. (1976): Circadian activity rhythm influenced by near zero magnetic field. Nature 261: 411–412

    Article  Google Scholar 

  • Brown, J.A., Jr., Scow, K.M. (1978): Magnetic induction of a circadian cycle in hamsters. J Interdiscipl Cycle Res 9: 137–145

    Article  Google Scholar 

  • Chics-DeMet, A., Chics-DeMet, E., Wu, H., Coopersmith, R., Leon, M. (1988): Earth-strength magnetic fields selectively alter activity of the pineal gland and hippocampus. Neurosci Abstr 156: 17

    Google Scholar 

  • Cremer-Bartels, G., Krause, K., Kiichle HJ (1983): Influence of low magnetic-field-strength variations on the retina and pineal gland of quails and humans. Graefs Arch Clin Exp Ophthalmol 220: 248–252

    Article  Google Scholar 

  • Cremer-Bartels, G., Krause, K., Mitoskas, G., Brodersen, G. (1984): Magnetic field of the earth as additional zeitgeber for endogeneous rhythms? Naturwissenschaften 71: 567–574

    Article  Google Scholar 

  • Deguchi, T., Axelrod, J. (1972): Sensitive assay for serotonin-N-acetyl-transferase activity in the rat pineal. Analyt Biochem 50: 174–179

    Article  Google Scholar 

  • Demaine, C., Semm, P. (1985): The avian pineal gland as an independent magnetic sensor. Neurosci Lett 62: 119–122

    Article  Google Scholar 

  • Demaine, C., Semm, P. (1986): Magnetic fields abolish nycthermal rhythmicity of responses of Purkinje cells to the pineal hormone melatonin in the pigeons cerebellum. Neurosci Lett 72: 158–162

    Article  Google Scholar 

  • Kalmijn, A.J. (1971): The electric sense of sharks and rays. J Exp Biol 55: 371–383

    Google Scholar 

  • Keshavan, M.S., Gangadhar, B.N., Gautam, R.U., Ajiit, V.B., Kapur, R.L. (1981): Convulsive threshold in humans and rats and magnetic field changes: Observation during total solar eclipse. Neurosci Lett 22: 205–208

    Article  Google Scholar 

  • Leucht, T. (1987): Magnetic effects on tail-fin melanophores of Xenopus laevis tadpoles in vitro. Naturwissenschaften 74: 441–443

    Article  Google Scholar 

  • Lindauer, M., Martin, H. (1968): Die Schwereorientierung der Bienen unter dem Einfluss des Erdmagnetfeldes. Z Vergl Physiol 60: 219–243

    Article  Google Scholar 

  • Maffei, L., Meschini, E., Papi, F. (1983): Pineal body and magnetic sensitivity: Homing in pinealectomized under overcast skies. Z Tierpsychol 62: 151–156

    Article  Google Scholar 

  • Mai, K., Semm, P.: C 2-deoxyglucose utilization during magnetic stimulation in the pigeon. J Hirnforschung (in press)

    Google Scholar 

  • Ossenkopp, K.-P, Kavaliers, M., Hirst, M. (1983): Effect of geomagnetic disturbance on morphine analgesia in mice reduced nocturnal analgesia following a magnetic storm. Neurosci Lett 40: 321–325

    Article  Google Scholar 

  • Persinger, M.A. (1987): Geopsychology and geopsychopathology: Mental processes and disorders associated with geochemical and geophysical factors. Experientia 43: 92–104

    Article  Google Scholar 

  • Phillips, J.B. (1987): Specialized visual receptores respond to magnetic field alignment in the blowfly (Calliphora vicina). Soc Neurosci Abst 13: 397

    Google Scholar 

  • Reuss, S., Semm, P. (1987): Earth-strength magnetic fields inhibit melatonin synthesis in the pigeon pineal gland. Naturwissenschaften 74: 38–39

    Article  Google Scholar 

  • Reuss, S., Semm, P., Vollrath, L. (1983): Different types of magnetically sensitive cells in the rat pineal gland. Neurosci Lett 40: 23–26

    Article  Google Scholar 

  • Schulten, K., Windemuth, A. (1986): Model for a physiological magnetic compass. In: Biophysical Effects of Steady Magnetic Fields, Maret, G., Kiepenheuen, J., Boccara, N., eds. Berlin: Springer-Verlag

    Google Scholar 

  • Semm, P., Brettschneider, Dölla, K., Wiltschko, W. (1987): Interaction between magnetic stimuli and annual activity in birds. Behavioral and Physiological investigations. In: Comparative Physiology of Environmental Adaptations, vol. 3, Pevet, P., ed.

    Google Scholar 

  • Semm, P., Demaine, C. (1986): Neurophysiological properties of magnetic cells in the visual system of the pigeon. J Comp Physiol 159: 619–625

    Article  Google Scholar 

  • Semm, P., Nohr, D., Demaine, C., Wiltschko, W. (1984): Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol 155A: 283–288

    Article  Google Scholar 

  • Semm, P., Schneider, T., Vollrath, L. (1980): Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 288: 607–608

    Article  Google Scholar 

  • Semm, P., Schneider, T., Vollrath, L., Wiltschko, W. (1982): Magnetic sensitive pineal cells in pigeons. In: Avian Navigation, Papi, F., Wallraff, H.G., eds. Berlin-Heidelberg-New York: Springer-Verlag

    Google Scholar 

  • Semm, P., Vollrath, L. (1984): Electrical responses of homing pigeon and guinea pig Purkinje cells to pineal indoleamines applied by microelectrophoresis. J Comp Physiol 154: 675–681

    Article  Google Scholar 

  • Walcott, C. (1977): Magnetic field and the orientation of homing pigeons under the sun. J Exp Biol 70: 105–123

    Google Scholar 

  • Welker, H.A., Semm, P., Willig, R.P., Commentz, J.C., Wiltschko, W., Vollrath, L. (1983): Effects of an artificial magnetic field on the serotonin N-acetyl transferase activity and melatonin content of the rat pineal gland. Exp Brain Res 50: 426–432

    Article  Google Scholar 

  • Wilson, B.W., Anderson, L.E., Hilton, D.I., Phillips, R.D. (1981): Chronic exposure to 60-Hz electric fields: Effects on pineal function in the rat. Bioelectromagnetics 2: 371–380

    Article  Google Scholar 

  • Wiltschko, W. (1978): Further analysis of the magnetic compass of migratory birds. In: Animal Migration, Navigation, and Homing, Schmidt-Koenig, K., Keeton, W.T., eds. Berlin: Springer-Verlag

    Google Scholar 

  • Wiltschko, W. (1983): Compasses used by birds. J Comp Biochem Physiol 76: 709–717

    Article  Google Scholar 

  • Wiltschko, W., Wiltschko, R. (1972): Magnetic compass of European robins. Science 176: 62–64

    Article  Google Scholar 

  • Wiltschko, W., Wiltschko, R. (1988): Magnetic orientation in birds. CurrOrnithol 5: 61–62

    Google Scholar 

  • Zeise, M., Semm, P. (1985): Melatonin lowers excitability of guinea pig hippocampal neurones in vitro J Comp Physiol 157: 23–29

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Semm, P. (1992). Pineal Function in Mammals and Birds is Altered by Earth-Strength Magnetic Fields. In: Moore-Ede, M.C., Campbell, S.S., Reiter, R.J. (eds) Electromagnetic Fields and Circadian Rhythmicity. Circadian Factors in Human Health and Performance. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6799-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6799-4_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6801-4

  • Online ISBN: 978-1-4684-6799-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics