Skip to main content

Direct Use of the Gradient for Investigating Molecular Energy Surfaces

  • Chapter
Applications of Electronic Structure Theory

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 4))

Abstract

A great deal of chemical and spectroscopical processes involve the relative motion of atomic nuclei. For most low-energy processes the Born-Oppenheimer fixed-nuclei approximation is sufficient: the nuclear motion takes place on an effective potential surface which is the sum of the electronic energy and the nuclear repulsion as a function of the nuclear coordinates. One of the main fields of quantum chemical activity is the study of these surfaces. Complete characterization of a multidimensional potential surface is a very complex task. Often, however, the nuclear motion takes place in the vicinity of a reference configuration, and the surface can be adequately characterized by a power series expansion, i.e., by its derivatives with respect to the nuclear coordinates. Traditionally, these derivatives have been evaluated from a pointwise calculation of the energy, followed by a fitting procedure. This method has some serious drawbacks both in efficiency and in numerical accuracy. Indeed, Hartree(1) observes that “the differentiation of a function specified only by a table of values ... is a notoriously unsatisfactory process, particularly if higher derivatives than the first are required” (see Gerratt and Mills(2) for examples).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Hartree, Numerical Analysis, Oxford University Press, Oxford (1968).

    Google Scholar 

  2. J. Gerratt and I. M. Mills, Force constants and dipole-moment derivatives of molecules from perturbed Hartree-Fock calculations. I, II, J. Chem. Phys. 49, 1719–1739 (1968).

    Article  Google Scholar 

  3. W. L. Clinton, Forces in molecules. I. Application of the virial theorem, J. Chem. Phys. 33, 1603–1606 (1960).

    Article  CAS  Google Scholar 

  4. R. M. Stevens, Geometry optimization in the computation of barriers to internal rotation, J. Chem. Phys. 52, 1397–1402 (1970).

    Article  CAS  Google Scholar 

  5. A. Veillard, Distortional effects on the ethane internal rotation barrier and rotational barriers in borazane and methylsilane, Chem. Phys. Lett. 3, 128–130 (1969).

    Article  CAS  Google Scholar 

  6. H. J. Monkhorst, Geometrical changes during the internal rotation in ethane, Chem. Phys. Lett. 3, 289–291 (1969).

    Article  CAS  Google Scholar 

  7. T. H. Dunning and N. W. Winter, Hartree-Fock calculation of the barrier to internal rotation in hydrogen peroxide, Chem. Phys. Lett. 11, 194–195 (1971).

    Article  CAS  Google Scholar 

  8. P. Pulay, Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. I. Theory, Mol. Phys. 17, 197–204 (1969).

    Article  CAS  Google Scholar 

  9. J. Hinze, in:Advances in Chemical Physics (I. Prigogine and S. A. Rice, eds.), Vol. 26, pp. 213–263, John Wiley and Sons, New York (1974).

    Chapter  Google Scholar 

  10. J. Hellmann, Einführung in die Quantenchemie, Deuticke & Co., Leipzig (1937).

    Google Scholar 

  11. R. P. Feynman, Forces in molecules, Phys. Rev. 56, 340–343 (1939).

    Article  CAS  Google Scholar 

  12. S. Bratož, Le calcul non empirique des constantes de force et des dérivées du moment dipolaire, Colloq. Int. C.N.R.S. 82, 287–301 (1958).

    Google Scholar 

  13. S. Bratož and M. Allavena, Electronic calculation on NH3. Harmonic force constants, infrared and ultraviolet spectra, J. Chem. Phys. 37, 2138–2143 (1962).

    Article  Google Scholar 

  14. M. Allavena and S. Bratož, Electronic calculation of force constants and infrared spectra of H2O and D2O, J. Chim. Phys. 60, 1199–1202 (1963).

    CAS  Google Scholar 

  15. M. Allavena, Calculation of the force constants of the methane molecule with the aid of electron wave functions, Theor. Chim. Acta 5, 21–28 (1966).

    Article  CAS  Google Scholar 

  16. R. Moccia, Optimization of the basis functions in SCF MO calculations; optimized one-center SCF basis set for HCl, Theor. Chim. Acta 8, 8–17 (1967).

    Article  CAS  Google Scholar 

  17. W. L. Bloemer and B. L. Bruner, Optimization of variational trial functions, J. Chem. Phys. 58, 3735–3744 (1973).

    Article  CAS  Google Scholar 

  18. W. Meyer, private communication.

    Google Scholar 

  19. W. Meyer and P. Pulay, Generalization of the force method of open-shell wavefunctions, Proceedings of the Second Seminar on Computational Problems in Quantum Chemistry, Strasbourg, France, September, 1972, pp. 44–48.

    Google Scholar 

  20. P. Pulay, Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. II. Force constants of water, Mol. Phys. 18, 473–480 (1970).

    Article  CAS  Google Scholar 

  21. K. Klauss, Zwei Anwendungsmöglichkeiten von perturbed Hartree-Fock Rechungen, Arbeitsbericht des Institutes für Theoretische Physikalische Chemie der Universität Stuttgart, No. 14, pp. 71–84, (1971).

    Google Scholar 

  22. T. Vladimiroff, Computation of molecular equilibrium geometries using self-consistent perturbation theory, J. Chem. Phys. 54, 2292 (1971).

    Article  CAS  Google Scholar 

  23. R. M. Stevens, R. M. Pitzer, and W. N. Lipscomb, Perturbed Hartree-Fock calculations. I. Magnetic susceptibility and shielding in the LiH molecule, J. Chem. Phys. 38, 550–560 (1963).

    Article  CAS  Google Scholar 

  24. W. Meyer and P. Pulay, Near-Hartree-Fock calculations of the force constants and dipole moment derivatives in methane, J. Chem. Phys. 56, 2109–2116 (1973).

    Article  Google Scholar 

  25. A. C. Hurley, The electrostatic calculation of molecular energies, Proc. R. Soc. London, Ser. A. 226, 170–192 (1954).

    Article  CAS  Google Scholar 

  26. G. G. Hall, The stability of a wavefunction under a perturbation, Philos. Mag. 6, 249–258 (1961).

    Article  Google Scholar 

  27. A. A. Frost, Floating spherical gaussian orbital mode! of molecular structure. I. Computational procedure. LiH as an example. J. Chem. Phys. 47, 3707–3714 (1967).

    Article  CAS  Google Scholar 

  28. D. M. Bishop and M. Randic, Ab initio calculation of harmonic force constants, J. Chem. Phys. 44, 2480–2487 (1966).

    Article  CAS  Google Scholar 

  29. D. M. Bishop and A. Macias, Ab initio calculation of harmonic force constants. IV. Comparison of different methods, J. Chem. Phys. 53, 3515–3521 (1970).

    Article  CAS  Google Scholar 

  30. D. P. Chong, P. J. Gagnon, and J. Thorhallson, Virial scaling and diatomic force constants, Can. J. Chem. 49, 1047–1052 (1971).

    Article  CAS  Google Scholar 

  31. P. E. Cade and W. M. Huo, Electronic structure of diatomic molecules. VI.A. Hartree-Fock wavefunctions and energy quantities for the ground states of the first-row hydrides, AH, J. Chem. Phys. 47, 614–648 (1967).

    Article  CAS  Google Scholar 

  32. P. E. Cade, K. D. Sales, and A. C. Wahl, Electronic structure of diatomic molecules. III.A. Hartree-Fock wavefunctions and energy quantities for N2(X 1 +g ) and N +2 (X2 +g , A2 IIu, B2 +g ) molecular ions, J. Chem. Phys. 44, 1973–2003 (1966).

    Article  CAS  Google Scholar 

  33. W. Meyer, Molecular spectroscopic constants by the coupled electron pair approach, Proceedings of the SRC atlas symposium No. 4, in: Quantum Chemistrythe State of Art, Chilton, Berkshire, England (1974).

    Google Scholar 

  34. L. Salem, Theoretical interpretation of force constants, J. Chem. Phys. 38, 1227–1236 (1963).

    Article  CAS  Google Scholar 

  35. P. Phillipson, Electronic bases of molecular vibrations. I. General theory for diatomic molecules, J. Chem. Phys. 39, 3010–3016 (1963).

    Article  CAS  Google Scholar 

  36. R. F. W. Bader and G. A. Jones, Electron-density distributions in hydride molecules. The ammonia molecule, J. Chem. Phys. 38, 2791–2802 (1963).

    Article  CAS  Google Scholar 

  37. H. J. Kim and R. G. Parr, Integral Hellmann-Feynman theorem, J. Chem. Phys. 41, 2892–2897 (1964).

    Article  CAS  Google Scholar 

  38. R. H. Schwendeman, Application of the Hellmann-Feynman ahd virial theorems to the theoretical calculation of molecular potential constants, J. Chem. Phys. 44, 556–561 (1966).

    Article  CAS  Google Scholar 

  39. J. Goodisman, Calculation of the barrier to internal rotation of ethane, J. Chem. Phys. 44, 2085–2092 (1966).

    Article  CAS  Google Scholar 

  40. R. F. W. Bader and A. D. Bandrauk, Relaxation of the molecular charge distribution and the vibrational force constants, J. Chem. Phys. 49, 1666–1675 (1968).

    Article  CAS  Google Scholar 

  41. V. V. Rossikhin and V. P. Morozov, O vychislenii silovych postoyannych molekuls primeneniem teoremy Hellmanna-Feynmana, Teor. Eksp. Khim. 5, 32–37 (1969).

    CAS  Google Scholar 

  42. M. Cohen and A. Dalgarno, Stationary properties of the Hartree-Fock approximation, Proc. Phys. Soc., London 77, 748–750 (1961).

    Article  CAS  Google Scholar 

  43. R. E. Stanton, Hellmann-Feynman theorem and correlation energies, J. Chem. Phys. 36, 1298–1300 (1962).

    Article  CAS  Google Scholar 

  44. D. F. Tuan, Hellmann-Feynman theorem for multiconfiguration self-consistent field theory and correlation energy, J. Chem. Phys. 51, 607–611 (1969).

    Article  CAS  Google Scholar 

  45. C. A. Coulson, Brillouin’s theorem and the Hellmann-Feynman theorem for Hartree-Fock wavefunctions, Mol. Phys. 20, 687–694 (1971).

    Article  Google Scholar 

  46. L. Salem and E. B. Wilson, Jr., Reliability of the Hellmann-Feynman theorem for approximate charge densities, J. Chem. Phys. 36, 3421–3427 (1962).

    Article  CAS  Google Scholar 

  47. L. Salem and M. Alexander, Numerical calculations by the Hellmann-Feynman prodecure, J. Chem. Phys. 39, 2994–2996 (1963).

    Article  CAS  Google Scholar 

  48. C. W. Kern and M. Karplus, Analysis of charge distributions: hydrogen fluoride, J. Chem. Phys. 40, 1374–1389 (1964).

    Article  CAS  Google Scholar 

  49. M. L. Bentson and B. Kirtman, Diatomic forces and force constants. I. Errors in the Hellmann-Feynman method, J. Chem. Phys. 44, 119–129 (1966).

    Article  Google Scholar 

  50. W. Fink and L. C. Allen, Numerical test of the integral Hellmann-Feynman theorem, J. Chem. Phys 46, 3270–3271 (1967).

    Article  CAS  Google Scholar 

  51. S. Rothenberg and H. F. Schaefer, Theoretical study of SO2 molecular properties, J. Chem. Phys. 53, 3014–3019 (1970).

    Article  CAS  Google Scholar 

  52. A. G. Lazarev and I. F. Kovalev, Vychislenie silovych postoyannych molekuly ammiaka v valentno-silovoi sisteme koordinat s ispolzovaniem kvantovomechanicheskoi teoremy Hellmanna-Feynmana, Opt. Spektrosk. 30, 660–663 (1971).

    CAS  Google Scholar 

  53. W. Meyer and P. Pulay, molpro Program Description, München and Stuttgart, Germany (1969).

    Google Scholar 

  54. W. J. Hehre, W. A. Latham, R. Ditchfield, M. D. Newton, and J. A. Pople, Gaussian 70, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, Program No. 236.

    Google Scholar 

  55. J. A. Pople, J. W. McIver, and N. S. Ostlund, Self-consistent perturbation theory. I. Finite perturbation methods, J. Chem. Phys. 49, 2960–2964 (1968).

    Article  CAS  Google Scholar 

  56. P. Pulay and W. Meyer, Force constants and dipole moment derivatives of ammonia from Hartree-Fock calculations, J. Chem. Phys. 57, 3337–3340 (1972).

    Article  CAS  Google Scholar 

  57. J. W. Mclver and A. Komornicki, Rapid geometry optimization for semi-empirical molecular orbital methods, Chem. Phys. Lett. 10, 303–306 (1971).

    Article  Google Scholar 

  58. D. Rinaldi and J. -L. Rivail, Recherche rapide de la géométrie d’une molecule à l’aide des methodes LCAO semi-empiriques, C. R. Acad. Sci. 274, 1664–1667 (1972).

    CAS  Google Scholar 

  59. P. Pulay and F. Török, Calculation of molecular geometries and force constants from CNDO wavefunctions by the force method, Mol. Phys. 25, 1153–1161 (1973).

    Article  CAS  Google Scholar 

  60. J. Panciř, Optimization of the geometry of the molecule in the framework of a single calculation of the energy function, Theor. Chim. Acta 29, 21–28 (1973).

    Article  Google Scholar 

  61. M. Grimmer and D. Heidrich, Eine Variante der quantenchemischen Geometrieoptimierung über den Gradienten der Potentialenergie am Beispiel von Pyrrol, Furan und Cyclopentan, Z. Chem. 13, 356–358 (1973).

    Article  CAS  Google Scholar 

  62. E. B. Wilson Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York (1955).

    Google Scholar 

  63. P. Pulay, Gy. Borossay, and F. Török, A general method for the calculation of matrices depending on the equilibrium conformation of the molecule by computers, J. Mol. Struct. 2, 336–340 (1968).

    Article  CAS  Google Scholar 

  64. K. Thomsen and P. Swanstrøm, Calculation of molecular one-electron properties using coupled Hartree-Fock methods. II. The water molecule, Mol. Phys. 26, 751–763 (1973).

    Article  CAS  Google Scholar 

  65. P. Pulay and F. Török, Force constants, vibrational assignment and geometry of methyl amine from Hartree-Fock calculations, J. Mol. Struct. 29, 239–246 (1975).

    Article  CAS  Google Scholar 

  66. T. Nishikawa, T. Itoh, and K. Shimoda, Molecular structure of methylamine from its microwave spectrum, J. Chem. Phys. 23, 1735–1736 (1955).

    Article  CAS  Google Scholar 

  67. D. R. Lide, Structure of the methylamine molecule. I. Microwave spectrum of CD3ND2, J. Chem. Phys. 27, 343–360 (1957).

    Article  CAS  Google Scholar 

  68. W. Meyer, private communication.

    Google Scholar 

  69. R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization, Comput. J. 6, 163–168 (1963).

    Google Scholar 

  70. B. A. Murtagh and R. W. H. Sargent, Computational experience with quadratically convergent minimization methods, Comput. J. 13, 185–194 (1970).

    Article  Google Scholar 

  71. W. Meyer and P. Pulay, unpublished.

    Google Scholar 

  72. A. D. Baker, C. Baker, C. R. Brundle, and D. W. Turner, The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photo-electron spectroscopy, Int. J. Mass Spectrom. Ion Phys. 1, 285–301 (1968).

    Article  CAS  Google Scholar 

  73. W. Meyer, Ionization energies of water from PNO-CI calculations, Int. J. Quantum Chem. 5, 341–348(1971).

    Article  Google Scholar 

  74. W. Meyer, PNO-CI studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane, J. Chem. Phys. 58, 1017–1035 (1973).

    Article  CAS  Google Scholar 

  75. W. Meyer and P. Pulay, Hartree-Fock calculation of the harmonic force constants and equilibrium geometry of formaldehyde, Theor. Chim. Acta 32, 253–264 (1974).

    Article  CAS  Google Scholar 

  76. P. Botschwina, Unrestricted Hartree-Fock calculation of force constants and vibrational frequencies of the HCO radical, Chem. Phys. Lett. 29, 98–101 (1974).

    Article  CAS  Google Scholar 

  77. P. Botschwina, An ab initio calculation of the force field and vibrational frequencies of H2CNH, Chem. Phys. Lett. 29, 580–583 (1974).

    Article  CAS  Google Scholar 

  78. S. Skaarup and J. E. Boggs, Ab initio calculation of the structures and force fields of the isomers of (NO)2, Proceedings of the Fifth Austin Symposium on Gas Phase Molecular Structure, March, 1974, pp. 69–72.

    Google Scholar 

  79. S. Skaarup and J. E. Boggs, An ab initio study of the conformational isomerism in HNO2, J. Mol. Struct. 30, 389–398 (1976).

    Article  CAS  Google Scholar 

  80. W. C. Ermler and C. W. Kern, Zero-point vibrational corrections to one-electron properties of the water molecule in the near-Hartree-Fock limit, J. Chem. Phys. 55, 4851–4860 (1971).

    Article  CAS  Google Scholar 

  81. T. H. Dunning, R. M. Pitzer, and S. Aung, Near-Hartree-Fock calculations on the ground state of the water molecule: energies, ionization potentials, geometry, force constants and one-electron properties, J. Chem. Phys. 57, 5044–5051 (1972).

    Article  CAS  Google Scholar 

  82. W. Meyer, unpublished.

    Google Scholar 

  83. A. R. Hoy and P. R. Bunker, Effective rotational-bending Hamiltonian of the water molecule, J. Mol. Spectrosc. 52, 439–456 (1974).

    Article  CAS  Google Scholar 

  84. H. F. Schaefer, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Massachusetts (1972).

    Google Scholar 

  85. A. D. McLean, Accuracy of computed spectroscopic constants from Hartree-Fock wavefunctions for diatomic molecules, J. Chem. Phys. 40, 243–244 (1964).

    Article  CAS  Google Scholar 

  86. A. C. Wahl, P. J. Bertoncini, G. Das, and T. L. Gilbert, Recent progress beyond the Hartree-Fock method for diatomic molecules: the method of optimized valence configurations, Int. J. Quantum Chem., Symp. 1967, 123–152.

    Google Scholar 

  87. P. Swanstrom, K. Thomsen, and P. B. Yde, Calculation of harmonic force constants from Hartree-Fock-Roothaan wave functions, Mol. Phys. 20, 1135–1146 (1971).

    Article  Google Scholar 

  88. P. B. Yde, K. Thomsen, and P. Swanstrom, Analytical ab initio calculation of force constants and dipole moment derivatives: LiH, Li2 and BH, Mol. Phys. 23, 691–697 (1972).

    Article  CAS  Google Scholar 

  89. C. J. H. Schutte, Ab initio calculation of molecular vibrational frequencies and force constants, Struct. Bonding (Berlin) 9, 213–263 (1971).

    CAS  Google Scholar 

  90. R. H. Schwendeman, Comparison of experimentally derived and theoretically calculated derivatives of the energy, kinetic energy and potential energy for CO, J. Chem. Phys. 44, 2115–2119(1966).

    Article  CAS  Google Scholar 

  91. W. Kolos and L. Wolniewicz, Improved theoretical ground-state energy of the hydrogen molecule, J. Chem. Phys. 49, 404–410 (1968).

    Article  CAS  Google Scholar 

  92. W. Meyer, PNO-CI and CEPA studies of electron correlation effects. II. Potential curves and dipole moment functions of the OH radical, Theor. Chim. Acta 35, 277–292.(1974).

    Article  CAS  Google Scholar 

  93. K. F. Freed, Force constants in Hartree-Fock theory, J. Chem. Phys. 52, 253–257 (1970).

    Article  CAS  Google Scholar 

  94. L. H. Jones and R. S. McDowell, Force constants of CH4—infrared spectra and thermodynamic functions of isotopic methanes, J. Mol. Spectrosc. 3, 632–653 (1959).

    Article  CAS  Google Scholar 

  95. G. Strey and I. M. Mills, The anharmonic force field and equilibrium structure of HCN and HCP, Mol. Phys. 26, 129–138 (1973).

    Article  CAS  Google Scholar 

  96. D. C. McKean and J. L. Duncan, On isotropic substitution and the choice between alternative sets of force constants with special reference to the cases of ethylene, ketene, diazomethane and formaldehyde, Spectrochim. Acta A 27, 1879–1891 (1971).

    Article  CAS  Google Scholar 

  97. P. Pulay and W. Meyer, Ab initio calculation of the force field of ethylene, J. Mol. Spectrosc. 40, 59–70(1971).

    Article  CAS  Google Scholar 

  98. B. L. Crawford, Jr., J. E. Lancaster, and R. G. Inskeep, The potential function of ethylene, J. Chem. Phys. 21, 678–686 (1953).

    Article  CAS  Google Scholar 

  99. J. L. Duncan and P. D. Mallinson, The general harmonic force field of formaldehyde, Chem. Phys. Lett. 23, 597–599 (1973).

    Article  CAS  Google Scholar 

  100. J. L. Duncan, private communication.

    Google Scholar 

  101. K. Kuchitsu and L. S. Bartell, Effect of anharmonic vibrations on the bond length of polyatomic molecules. II. Cubic constants ahd equilibrium bond lengths in methane, J. Chem. Phys. 36, 2470–2481 (1962).

    Article  CAS  Google Scholar 

  102. P. Pulay, Ab initio calculation of force constants and equilibrium geometries. III. Second-row hydrides. Mol. Phys. 21, 329–339 (1971).

    Article  CAS  Google Scholar 

  103. P. Pulay and W. Meyer, Comparison of the ab initio force constants of ethane, ethylene and acetylene, Mol. Phys. 27, 473–490 (1974).

    Article  CAS  Google Scholar 

  104. W. Sawodny and P. Pulay, Ab initio study of the force constants of inorganic molecules. ONF and NF3, J. Mol. Spectrosc. 51, 135–141 (1974).

    Article  CAS  Google Scholar 

  105. P. Pulay, A. Ruoff, and W. Sawodny, Ab initio calculation of force constants for the linear molecules HCN, FCN, (CN)2 and FN2, Mol. Phys. 30, 1123–1131 (1975).

    Article  CAS  Google Scholar 

  106. T. Nakagawa and Y. Morino, Anharmonic potential constants and vibrational and rotational parameters for hydrogen cyanide, J. Mol. Spectrosc. 31, 208–229 (1969).

    Article  CAS  Google Scholar 

  107. J. Suzuki, M. A. Pariseau, and J. Overend, General quartic force field of HCN, J. Chem. Phys. 44, 3561–3567 (1966).

    Article  CAS  Google Scholar 

  108. R. Moccia, Variable bases in SCF MO calculations, Chem. Phys. Lett. 5, 260–268 (1970).

    Article  CAS  Google Scholar 

  109. K. Thomsen and P. Swanstrom, Calculation of molecular one-electron properties using coupled Hartree-Fock methods. I. Computational scheme, Mol. Phys. 26, 735–750 (1973).

    Article  CAS  Google Scholar 

  110. W. Kolos and C. C. J. Roothaan, Accurate electronic wave functions for the hydrogen molecule, Rev. Mod. Phys. 32, 219–232 (1960).

    Article  CAS  Google Scholar 

  111. H. B. Schlegel, S. Wolfe, and F. Bernardi, Ab initio computation of force constants from Gaussian 70 wavefunctions. The second and third period hydrides, J. Chem. Phys. 63, 3632–3638 (1975).

    Article  CAS  Google Scholar 

  112. H. B. Schlegel, S. Wolfe, and K. Mislow, Ab initio molecular orbital calculations on silaethylene H2Si=CH2. The theoretical infrared spectum. J. Chem. Soc. Chem. Comm. 1975, 246–247 (1975).

    Article  Google Scholar 

  113. D. Garton and B. T. Sutcliffe, in: Specialist Periodical Report, Theoretical Chemistry (R. N. Dixon, senior reporter), Vol. 1, pp. 34–59, The Chemical Society, London (1974).

    Google Scholar 

  114. U. Wahlgren, J. Pacansky, and P. S. Bagus, Ab initio force constants for the HCN molecule: SCF and CI results, J. Chem. Phys. 63, 2874–2881 (1975).

    Article  CAS  Google Scholar 

  115. B. J. Rosenberg, W. C. Ermler, and I. Shavitt, Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces. J. Chem. Phys 65, 4072–4082 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Pulay, P. (1977). Direct Use of the Gradient for Investigating Molecular Energy Surfaces. In: Schaefer, H.F. (eds) Applications of Electronic Structure Theory. Modern Theoretical Chemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8541-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8541-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8543-1

  • Online ISBN: 978-1-4684-8541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics