Skip to main content

Abstract

The important relationship between enzyme catalysis and the enhanced affinity of an enzyme for its substrate in the transition state was first noted by Pauling in 1948.(1) In recent years, attention has been focused on the design of stable analogs of transition states of enzyme reactions, since the structure of high-affinity analogs can provide considerable insight into the structure and energy of enzyme transition states. The factors which give rise to enhanced transition-state analog binding can be complex, however, and many of the analogs which have been tested mimic intermediates rather than true transition states along the enzyme reaction path.(2–5)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Pauling, Chemical achievement and hope for the future, Am. Sci. 36, 51–58 (1948).

    PubMed  CAS  Google Scholar 

  2. R. Wolfenden, Analog approaches to the structure of the transition state in enzyme reactions, Acc. Chem. Res. 5, 10–18 (1972).

    Article  CAS  Google Scholar 

  3. G. E. Lienhard, Enzymatic catalysis and transition-state theory, Science 180, 149–154 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. W. P. Jencks, Binding energy, specificity, and enzymic catalysis: The Circe effect, Adv. Enzymol. Relat. Areas Mol. Biol. 43, 219–410 (1976).

    Google Scholar 

  5. K. Schray and J. P. Klinman, The magnitude of enzyme transition state analog binding constants, Biochem. Biophys. Res. Commun. 57, 641–648 (1974).

    Article  PubMed  CAS  Google Scholar 

  6. J. H. Richards, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. II pp. 321–333, Academic Press, New York (1970).

    Google Scholar 

  7. A. Rose, in: The En zymes, 3rd ed. (P. D. Boyer, ed.), Vol. II pp. 281–320, Academic Press, New York (1970).

    Google Scholar 

  8. G. Popjak, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. 11 pp. 115–215, Academic Press, New York (1970).

    Google Scholar 

  9. J. F. Kirsch, Mechanism of enzyme action, Ann. Rev. Biochem. 42, 205–234 (1973).

    Article  PubMed  CAS  Google Scholar 

  10. J. W. Cornforth, The logic of working with enzymes, Chem. Soc. Rev. 2, 1–20 (1973).

    Article  CAS  Google Scholar 

  11. H. Simon and D. Palm, Isotope effects in organic chemistry and biochemistry, Angew Chem. Int. Ed. Engl. 5, 920–933 (1966).

    Article  CAS  Google Scholar 

  12. J. Bigeleisen and M. Wolfsberg, Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv. Chem. Phys. 1, 15–76 (1958).

    Article  CAS  Google Scholar 

  13. L. Melander, Isotope Effects on Reaction Rates, Ronald, New York (1960).

    Google Scholar 

  14. H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald, New York (1966).

    Google Scholar 

  15. M. Wolfsberg, Isotope effects, Ann. Rev. Phys. Chem. 20, 449–473 (1969).

    Article  CAS  Google Scholar 

  16. C. J. Collins and N. S. Bowman, eds., Isotope Effects in Chemical Reactions, Van Nostrand Reinhold, New York (1971).

    Google Scholar 

  17. R. P. Bell, The Proton in Chemistry, 2nd ed. Cornell University Press, Ithaca, N.Y. (1973).

    Google Scholar 

  18. C. G. Swain, E. C. Stivers, J. F. Reuwer, Jr., and L. J. Schaad, Use of hydrogen isotope effects to identify the attacking nucleophile in the enolization of ketones catalyzed by acetic acid, J. Am. Chem. Soc. 80, 5885–5893 (1958).

    Article  CAS  Google Scholar 

  19. F. H. Westheimer, The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium, Chem. Rev. 61, 265–273 (1961).

    Article  CAS  Google Scholar 

  20. J. Bigeleisen, Correlation of kinetic isotope effects with chemical bonding in three-centre reactions, Pure Appl. Chem. 8, 217–223 (1964).

    Article  CAS  Google Scholar 

  21. R. A. More O’Ferrall and J. Kouba, Model calculations of primary hydrogen isotope effects, J. Chem. Soc. B 1967, 985–990.

    Google Scholar 

  22. R. A. More O’Ferrall, Model calculations of hydrogen isotope effects for non-linear transition studies, J. Chem. Soc. B 1970, 785–790.

    Google Scholar 

  23. J. Donahue, in: Structural Chemistry and Molecular Biology ( A. Rich and N. Davidson, eds.), pp. 443–465, W. H. Freeman, San Francisco (1968).

    Google Scholar 

  24. W. C. Hamilton, in: Structural Chemistry and Molecular Biology ( A. Rich and N. Davidson, eds.), pp. 466–483, W. H. Freeman, San Francisco (1968).

    Google Scholar 

  25. M. S. Lehmann, T. F. Koetzle, and W. C. Hamilton, Precise neutron diffraction structure determination of protein and nucleic acid components, J. Am. Chem. Soc. 94, 2657–2660 (1972).

    Article  PubMed  CAS  Google Scholar 

  26. P. A. Kollman, and L. C. Allen, The theory of the hydrogen bond, Chem. Rev. 72, 283–303 (1972).

    Article  CAS  Google Scholar 

  27. R. Yamdagni and P. Kebarle, Gas phase basicities of amines. Hydrogen bonding in proton-bound amine dimers and proton-induced cyclization of a, w diamines, J. Am. Chem. Soc. 95, 3504–3510 (1973).

    Article  CAS  Google Scholar 

  28. A. J. Kresge and Y. Chiang, The effect of bending vibrations on the magnitude of hydrogen isotope effects, J. Am. Chem. Soc. 91, 1025–1026 (1969).

    Google Scholar 

  29. A. V. Willi and M. Wolfsberg, The influence of “bond making and bond breaking” in the transition state on hydrogen isotope effects in linear three center reactions, Chem. Ind. London 1964, 2097–2098.

    Google Scholar 

  30. E. F. Caldin, Tunneling in proton-transfer reactions in solution, Chem. Rev. 68, 135–156 (1968).

    Google Scholar 

  31. W. J. Albery, Isotope effects in proton transfer reactions, Trans. Faraday Soc. 63, 200–206 (1967).

    Article  CAS  Google Scholar 

  32. G. S. Hammond, A correlation of reaction rates, J. Am. Chem. Soc. 77, 334–338 (1955).

    Article  CAS  Google Scholar 

  33. R. P. Bell and J. E. Crooks, Kinetic hydrogen isotope effects in the ionization of some ketonic substances, Proc. Roy. Soc. London Ser. A 286, 285–299 (1965).

    Article  CAS  Google Scholar 

  34. R. P. Bell. F. R. S. Goodall, and D. M. Goodall, Kinetic hydrogen isotope effects in the ionization of some nitroparaffins, Proc. Roy. Soc. London Ser. A 294, 273–297 (1966).

    Article  CAS  Google Scholar 

  35. A. F. Cockerill, Mechanisms of elimination reactions, J. Chem. Soc. B 1967, 964–969.

    Google Scholar 

  36. R. P. Bell and B. G. Cox, Primary hydrogen isotope effects on the rate of ionization of nitroethane in mixtures of water and dimethyl sulfoxide, J. Chem. Soc. B 1971, 783–785.

    Google Scholar 

  37. R. P. Bell, Liversidge lecture, recent advances in the study of kinetic hydrogen isotope effects, Chem. Soc. Rev. 3, 513–544 (1974).

    Google Scholar 

  38. F. G. Bordwell and W. J. Boyle, Jr., Kinetic isotope effects for nitro-alkanes and their relationship to transition state structure in proton-transfer reactions, J. Am. Chem. Soc. 97, 3447–3452 (1975).

    Google Scholar 

  39. W. A. Pryor and K. G. Kneipp, Primary kinetic isotope effects and the nature of hydrogen-transfer transition states, J. Am. Chem. Soc. 93, 5584–5586 (1971).

    Article  CAS  Google Scholar 

  40. R. A. Marcus, Theoretical relations among rate constants, barriers, and bronsted slopes of chemical reactions, J. Phys. Chem. 72, 891–899 (1968).

    Article  CAS  Google Scholar 

  41. A. J. Kresge, Sixth Steenbock Symposium on Isotope Effects on Enzyme Catalyzed Reactions (W. W. Cleland, M. H. O’Leary, and D. B. Northrop, eds.), pp. 37–63, University Park Press, Baltimore (1977).

    Google Scholar 

  42. W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York (1969), p. 243.

    Google Scholar 

  43. R. P. Bell, The tunnel effect correction for parabolic potential barriers, Trans. Faraday Soc. 55, l-4 (1959).

    Google Scholar 

  44. M. J. Stern and R. E. Weston, Jr., Phenomenologic manifestations of quantum mechanical tunnelling. I. Curvature in Arrhenius plots, J. Chem. Phys. 60, 2803–2807 (1974).

    Article  CAS  Google Scholar 

  45. M. J. Stem and R. E. Weston, Jr., Phenomenologic manifestations of quantum mechanical tunnelling. II. Effect on Arrhenius pre-exponential factors for primary hydrogen kinetic isotope effects, J. Chem. Phys. 60, 2808–2814 (1974).

    Article  Google Scholar 

  46. M. J. Stern and R. E. Weston, Jr., Phenomenologic manifestations of quantum mechanical tunnelling. III. Effects on relative tritium—deuterium kinetic isotope effects, J. Chem. Phys. 60, 2815–2821 (1974).

    Article  CAS  Google Scholar 

  47. E. F. Caldin and S. Mateo, Kinetic isotope effects in various solvents for the proton-transfer reactions of 4-nitrophenylnitromethane with basis, J. Chem. Soc. Chem. Commun. 1973, 854–855.

    Google Scholar 

  48. E. F. Caldin and C. J. Wilson, Structure and solvent influences on tunnelling in reactions of 4-nitrophenylnitromethane with nitrogen bases in aprotic solvents, Faraday Symp. Chem. Soc. 10, 121–131 (1975).

    Article  CAS  Google Scholar 

  49. R. P. Bell, W. H. Sachs, and R. L. Tranter, Model calculations of isotope effects in proton transfer reactions, Trans. Faraday Soc. 67, 1995–2003 (1970).

    Article  Google Scholar 

  50. J. Banger, A. Jaffe, An-Chung Lin, and W. H. Saunders, Jr., Carbon isotope effects on proton transfers from carbon, and the question of hydrogen tunneling, J. Am. Chem. Soc. 97, 7177–7178 (1975).

    Article  CAS  Google Scholar 

  51. S. R. Hartshorn and V. J. Shiner, Calculation of H/D, ’2C/13C, and 12C/14C. Factors from valence force fields derived from a series of simple organic molecules, J. Am. Chem. Soc. 94, 9002–9012 (1972).

    Google Scholar 

  52. W. E. Buddenbaum and V. J. Shiner, Jr., in: Sixth Steenbock Symposium on Isotope Effects on Enzyme Catalyzed Reactions (W. W. Cleland, M. H. O’Leary, and D. B. Northrop, eds.), pp. 1–36, University Park Press, Baltimore (1977).

    Google Scholar 

  53. P. F. Cook and W. W. Cleland, Deuterium and tritium isotope effects for liver alcohol dehydrogenase using cyclohexanol, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36, 2078 (1977).

    Google Scholar 

  54. J. P. Klinman, unpublished results.

    Google Scholar 

  55. H. P. Meloshe, C. T. Monti, and W. W. Cleland, Magnitude of the equilibrium isotope effects on carbon—tritium bond synthesis, Biochem. Biophys. Acta 480, 517–519 (1977).

    Google Scholar 

  56. R. L. Schowen, in: Sixth Steenbock Symposium on Isotope Effects on Enzyme Catalyzed Reactions ( W. W. Cleland, M. H. O’Leary, and D. B. Northrop, eds.), pp. 64–99, University Park Press, Baltimore (1977).

    Google Scholar 

  57. R. L. Schowen, Mechanistic deductions from solvent isotope effects, Prog. Phys. Org. Chem. 9, 275–332 (1972).

    Article  CAS  Google Scholar 

  58. W. W. Cleland, M. H. O’Leary, and D. B. Northrop, eds., Sixth Steenbock Symposium on Isotope Effects on Enzyme Catalyzed Reactions, University Park Press, Baltimore (1977).

    Google Scholar 

  59. W. W. Cleland, Partition analysis and the concept of net rate constants as tools in enzyme kinetics, Biochemistry 14, 3220–3224 (1975).

    Article  PubMed  CAS  Google Scholar 

  60. J. P. Klinman, The mechanism of enzyme-catalyzed reduced nicotinamide adenine dinucleotide-dependent reductions: Substituent and isotope effects in the yeast alcohol dehydrogenase reaction, J. Biol. Chem. 247, 7977–7987 (1972).

    PubMed  CAS  Google Scholar 

  61. J. P. Klinman, Isotope effects and structure-reactivity correlations in the yeast alcohol dehydrogenase reaction. A study of the enzyme catalyzed oxidation of aromatic alcohols, Biochemistry 15, 2018–2026 (1976).

    Google Scholar 

  62. D. L. Vander Jagt and L. P. B. Han, Deuterium isotope effects and chemically modified coenzymes as mechanistic probes of yeast alyoxylase-I, Biochemistry 12, 5161–5166 (1973).

    Article  Google Scholar 

  63. K. Bush, V. J. Shiner, Jr., and H. R. Mahler, Deuterium isotope effects on initial rates of the liver alcohol dehydrogenase reaction, Biochemistry 12, 4802–4805 (1972).

    Article  Google Scholar 

  64. W. W. Cleland, What limits the rate of an enzyme-catalyzed reaction, Acc. Chem. Res. 8, 145–151 (1975).

    Article  CAS  Google Scholar 

  65. L. Bachan, C. B. Storm, J. W. Wheeler, and S. Kaufman, Isotope effects in the hydroxylation of phenylethylamine by dopamine-ß-hydroxylase, J. Am. Chem. Soc. 96, 6799–6800 (1974).

    Article  PubMed  CAS  Google Scholar 

  66. D. B. Northrop, Steady state analysis of kinetic isotope effects in enzymatic reactions, Biochemistry 14, 2644–2651 (1975).

    Article  PubMed  CAS  Google Scholar 

  67. R. H. Abeles, W. R. Frisell, and C. G. Mackenzie, A dual isotope effect in the enzymatic oxidation of deuteromethyl sarcosine, J. Biol. Chem. 235, 853–856 (1960); corrected 235, 1544 (1960).

    Google Scholar 

  68. J. L. Robinson and I. A. Rose, The proton transfer reactions of muscle pyruvate kinase, J. Biol. Chem. 247, 1096–1105 (1972).

    PubMed  CAS  Google Scholar 

  69. I. A. Rose, E. L. O’Connell, and A. H. Mehler, Mechanism of the aldolase reaction, J. Biol. Chem. 240, 1758–1765 (1965).

    PubMed  CAS  Google Scholar 

  70. E. C. Dinovo and P. D. Boyer, Isotopic probes of the enolase reaction mechanism, J. Biol. Chem. 246, 4586–4593 (1971).

    CAS  Google Scholar 

  71. C. T. Walsh, A. Schonbrunn, and R. H. Abeles, Studies on the mechanism of action of D-amino oxidase, J. Biol. Chem. 246, 6855–6866 (1971).

    PubMed  CAS  Google Scholar 

  72. K. Yagi, M. Nishikimi, A. Takai, and N. Ohishi, Mechanism of enzyme action. VI. Kinetic isotope effect on o-amino acid oxidase reaction, Biochim. Biophys. Acta 321, 64–71 (1973).

    PubMed  CAS  Google Scholar 

  73. H. J. Bright and D. J. T. Porter, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. XII, pp. 421–505, Academic Press, New York (1976).

    Google Scholar 

  74. D. A. Weisblat and B. M. Babior, The mechanism of action of ethanolamine ammonialyase, a B12-dependent enzyme, J. Biol. Chem. 246, 6064–6071 (1971).

    PubMed  CAS  Google Scholar 

  75. M. I. Schimerlik, C. E. Grimshaw, and W. W. Cleland, The use of isotope effects to determine the rate limiting steps for malic enzyme, Biochemistry 16, 571 (1977).

    Article  PubMed  CAS  Google Scholar 

  76. W. J. Albery and J. R. Knowles, The determination of the rate-limiting step in a proton transfer reaction from the breakdown of the Swain—Schaad relation, J. Am. Chem. Soc. 99, 637–638 (1977).

    Article  CAS  Google Scholar 

  77. R. K. Gupta, R. M. Oesterling, and A. S. Mildvan, Dual divalent cation requirement for activation of pyruvate kinase: Essential roles for both enzyme-bound and nucleotide-bound metal ions, Biochemistry 15, 2881–2887 (1976).

    Article  PubMed  CAS  Google Scholar 

  78. J. F. Biellmann, E. L. O’Connell, and I. A. Rose, Secondary isotope effects in reactions catalyzed by yeast and muscle aldolase, J. Am. Chem. Soc. 91, 6484–6488 (1969).

    Article  PubMed  CAS  Google Scholar 

  79. E. Grazi, T. Cheng, and B. L. Horecker, The formation of a stable aldolase—dihydroxyacetone phosphate complex, Biochem. Biophys. Res. Commun. 7, 250–253 (1962).

    Article  PubMed  CAS  Google Scholar 

  80. T. Y. S. Shen and E. W. Westhead, Divalent cation and pH-dependent primary isotope effects in the enolase reaction, Biochemistry 12, 3333–3337 (1973).

    Article  PubMed  CAS  Google Scholar 

  81. H. R. Mahler and J. ’ Douglas, Mechanisms of enzyme-catalyzed oxidation—reduction reactions I., J. Am. Chem. Soc. 79, 1159–1166 (1957).

    Article  CAS  Google Scholar 

  82. J. D. Shore and H. Gutfreund, Transients in the reactions of liver alcohol dehydrogenase, Biochemistry 9, 4655–4659 (1970).

    Article  PubMed  CAS  Google Scholar 

  83. R. T. Dworschack and B. V. Plapp, pH, isotope and substituent effects on the interconversion of aromatic substrates, catalyzed by hydroxybutyrimidylated liver alcohol dehydrogenase, Biochemistry 16, 2716–2725 (1977).

    Article  PubMed  CAS  Google Scholar 

  84. G. J. Hardman, L. F. Blackwell, C. R. Boswell, and P. D. Buckley, Substituent effects on the pre-steady state kinetics of oxidation of benzyl alcohols by liver alcohol dehydrogenase, Eur. J. Biochem. 50, 113–118 (1974).

    Article  PubMed  CAS  Google Scholar 

  85. A. Brown and H. F. Fisher, A comparison of the glutamate dehydrogenase catalyzed oxidation of NADPH by trinitrobenzenesulfonate with the uncatalyzed reaction, J. Am. Chem. Soc. 98, 5682–5688 (1976).

    Article  PubMed  CAS  Google Scholar 

  86. L. C. Kurz and C. Frieden, Comparison of the structure of enzymatic and non-enzymatic transition states. The reductive desulfonation of 4-X-2,6-dinitrobenzenesulfonates by NADH, Biochemistry 16, 5207–5216 (1977).

    Article  PubMed  CAS  Google Scholar 

  87. L. do Amaral, M. P. Bastos, H. G. Bull, and E. H. Cordes, Secondary deuterium isotope effects for addition of nitrogen nucleophiles to substituted benzaldehydes, J. Am. Chem. Soc. 95, 7369–7374 (1973).

    Article  Google Scholar 

  88. J. P. Klinman, Acid—base catalysis in the yeast alcohol dehydrogenase reaction, J. Biol. Chem. 250, 2569–2573 (1974).

    Google Scholar 

  89. W. P. Jencks, General acid—base catalysis of complex reactions in water, Chem. Rev. 72, 705–718 (1972).

    Article  CAS  Google Scholar 

  90. R. Stewart, A. L. Gatzke, M. Macke, and K. Yates, Deuterium isotope effects in organic cations, Chem. Ind. 1959, 331–332.

    Google Scholar 

  91. P. Ballinger and F. A. Long, Acid ionization constants of alcohols. I. Trifluoroethanol in the solvents H2O and D20, J. Am. Chem. Soc. 81, 1050–1053 (1959).

    Article  CAS  Google Scholar 

  92. J. P.Klinman, K. Welsh, and D. J. Creighton, in: Solvent Isotope Effects in the Yeast Alcohol Dehydrogenase Reaction in Alcohol and Aldehyde Metabolizing Systems (R. G. Thurman, T. Yonetani, J. R. Williamson, and B. Chance, eds.), Vol. II, Academic Press, New York, in press.

    Google Scholar 

  93. B. L. Vallee and F. L. Hock, Zinc, a component of yeast alcohol dehydrogenase. Proc. Nat. Acad. Sci. USA 41, 327–338 (1955).

    Article  PubMed  CAS  Google Scholar 

  94. C. Veillon and A. J. Sytkowski, The intrinsic zinc atoms of yeast alcohol dehydrogenase, Biochem. Biophys. Res. Commun. 67, 1494–1500 (1976).

    Article  Google Scholar 

  95. J. P. Klinman and K. Welsh, The zinc content of yeast alcohol dehydrogenase, Biochem. Biophys. Res. Commun. 70, 878–884 (1976).

    Article  PubMed  CAS  Google Scholar 

  96. J. J. Steffens and D. M. Chipman, Reactions of dihydronicotinamides. I. Reduction of trifluoroacetophenone by 1-substituted dihydronicotinamides, J. Am. Chem. Soc. 93, 66946696 (1971).

    Google Scholar 

  97. D. J. Creighton, J. Hajdu, G. Mooser, and D. S. Sigman, Model dehydrogenase reactions. Reduction of N-methylacridinium ion by reduced nicotinamide adenine dinucleotide and its derivatives, J. Am. Chem. Soc. 95, 6855–6857 (1973).

    Article  PubMed  CAS  Google Scholar 

  98. R. F. Williams, S. Shinkai, and T. C. Bruice, Radical mechanism for 1.5-dihydroflavin reduction of carbonyl compounds, Proc. Nat. Acad. Sci. USA 72, 1763–1767 (1975).

    Article  PubMed  CAS  Google Scholar 

  99. H. Sund and H. Theorell, in: The Enzymes (P. D. Boyer, H. Lardy, and K. Myrback, eds.), Vol. VII, pp. 25–83, Academic Press, New York (1963).

    Google Scholar 

  100. J. W. Jacobs, J. T. McFarland, I. Wainer, D. Jeanmaier, C. Ham, K. Hamm, M. Wnuk, and M. Lam, Electronic substituent effects during liver alcohol dehydrogenase catalyzed reduction of aromatic alcohols, Biochemistry 13, 60–64 (1974).

    Article  PubMed  CAS  Google Scholar 

  101. B. V. Plapp, R. L. Brooks, and J. D. Shore, Horse liver alcohol dehydrogenase, amino groups and rate-limiting steps in catalysis, J. Biol. Chem. 248, 3470–3475 (1973).

    PubMed  CAS  Google Scholar 

  102. J. McFarland, personal communication.

    Google Scholar 

  103. C. I. Branden, H. Jornvall, H. Eklund, and B. Furugren, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. XI, pp. 104–190, Academic Press, New York (1975).

    Google Scholar 

  104. H. Eklund, B. Nordstrom, E. Zeppezauer, G. Soderland, I. Ohlsson, T. Boiwe, B. O. Soderberg, O. Tapia, C. J. Branden, and A. Akeson, Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 A resolution, J. Mol. Biol. 102, 27–59 (1976).

    Article  PubMed  CAS  Google Scholar 

  105. D. L. Sloan, M. M. Young, and A. S. Mildvan, NMR studies of substrate interaction with cobalt substituted alcohol dehydrogenase from liver, Biochemistry 14, 1998–2008 (1975).

    Article  PubMed  CAS  Google Scholar 

  106. D. J. Bates, B. R. Golden, and C. Frieden, A new reaction of glutamate dehydrogenase: The enzyme-catalyzed formation of trinitrobenzene from TNBS in the presence of reduced coenzyme, Biochem. Biophys. Res. Commun. 39, 502–507 (1970).

    Article  PubMed  CAS  Google Scholar 

  107. L. C. Kurz and C. Frieden, A model dehydrogenase reaction. Charge distribution in the transition state, J. Am. Chem. Soc. 97, 677–679 (1975).

    Article  CAS  Google Scholar 

  108. C. G. Swain, R. A. Wiles, and R. F. W. Bader, Use of substituent effects on isotope effects to distinguish between proton and hydride transfers. Part I. Mechanism of oxidation of alcohols by bromine in water, J. Am. Chem. Soc. 83, 1945–1950 (1961).

    Article  CAS  Google Scholar 

  109. I. A. Rose, Mechanism of the aldose-ketose isomerase reactions, Adv. Enzymol. Relat. Areas Mol. Biol. 43, 491–517 (1976).

    Google Scholar 

  110. J. M. Herlihy, S. G. Maister, W. J. Albery, and J. R. Knowles, Energetics of triophosphate isomerase: The fate of the l(R)-3H label of tritiated dehydroxyacetone phosphate in the isomerase reaction, Biochemistry 15, 5601–5607 (1976).

    Article  PubMed  CAS  Google Scholar 

  111. S. G. Maister, C. P. Pett, J. W. Albery, and J. R. Knowles, Energetics of triosephosphate isomerase: The appearance of solvent tritium in substrate dihydroxyacetone phosphate and in product, Biochemistry 15, 5607–5612 (1976).

    Article  PubMed  CAS  Google Scholar 

  112. S. J. Fletcher, J. M. Herlihy, W. J. Albery, and J. R. Knowles, Energetics of triosephosphate isomerase: The appearance of solvent tritium in substrate glyceraldehyde 3-phosphate and in product, Biochemistry 15, 5612–5617 (1976).

    Article  PubMed  CAS  Google Scholar 

  113. P. F. Leadlay, W. J. Albery, and J. R. Knowles, Energetics of triosphosphate isomerase: Deuterium isotope effects in the enzyme-catalyzed reaction, Biochemistry 15, 5617–5620 (1976).

    Article  PubMed  CAS  Google Scholar 

  114. W. J. Albery and J. R. Knowles, Free-energy profile for the reaction catalyzed by triose-phosphate isomerase, Biochemistry 15, 5627–5631 (1976).

    Article  PubMed  CAS  Google Scholar 

  115. A. Hall and J. R. Knowles, The uncatalyzed rates of enolization of dihydroxyacetone phosphate and of glyceraldehyde 3-phosphate in neutral aqueous solution. The quantitative assessment of the effectiveness of an enzyme catalyst, Biochemistry 14, 4348–4352 (1975).

    Article  PubMed  CAS  Google Scholar 

  116. R. Wolfenden, Transition state analogues for enzyme catalysis, Nature (London) 223, 704–705 (1969).

    Article  CAS  Google Scholar 

  117. S. J. Reynolds, D. W. Yates, and C. I. Pogson, Dihydroxyacetone phosphate: Its structure and reactivity with a-glycerophosphate dehydrogenase, aldolase and triose phosphate isomerase and some possible metabolic implications, Biochem. J. 122, 285–297 (1971).

    PubMed  CAS  Google Scholar 

  118. W. W. Cleland, Determining the chemical mechanisms of enzyme catalyzed reactions by kinetic studies, Adv. Enzymol. Relat. Areas Mol. Biol. 45, 273–387 (1977).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klinman, J.P. (1978). Primary Hydrogen Isotope Effects. In: Gandour, R.D., Schowen, R.L. (eds) Transition States of Biochemical Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9978-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9978-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9980-3

  • Online ISBN: 978-1-4684-9978-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics