Skip to main content

The Pharmacology of Basal Forebrain Involvement in Cognition

  • Chapter
The Basal Forebrain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 295))

Abstract

Magnocellular basal nucleus (MBN) neurons, a majority of which are cholinergic, directly influence cortical neurophysiology. These neurons appear to be part of a diffuse cortically projecting system that includes brain stem monoaminergic neurons as well as the MBN column. The entire system appears to modify cortical excitability in relation to an animal’s behavioral state (see Saper, 1987). By regulating activity within the entire cortical mantle, this system can influence a broad range of cognitive phenomena (sensory processing, attention, motivation, memory). The restrictive terminal distribution of individual MBN neurons (Bigl et al., 1982: Price and Stern, 1983; Nyakas et al., 1987) however, as compared to monoaminergic projections, may allow for a more discrete modulation of cortical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alheid G.F., and Heimer, L., 1988, New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorder: the striatopallidal, amygdaloid and corticopetal components of substantia innominata, Neuroscience. 27:1.

    Article  PubMed  CAS  Google Scholar 

  • Allen, C.A., and Crawford, I.L., 1984, GABAergic agents in the medial septal nucleus affect hippocampal theta rhythm and acetylcholine utilization. Brain Res 322:261.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, A., and Kohier, C., 1984, A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain, J. comp. Neurol 225:327.

    Article  PubMed  CAS  Google Scholar 

  • Altman, H.J., Crosland, R.D., Jenden, D.J., and Berman, R.F., 1985, Further characterization of the nature of the behavioral and neurochemical effects of lesions to the nucleus basalis of Meynert in the rat, Neurobiol. Aging. 6:125.

    CAS  Google Scholar 

  • Beatty, W.W., and Shavalia, D.A., 1980, Rat spatial memory: resistance to retroactive interference at long retention intervals, Anim. Learn. Behav.. 8:550.

    Article  Google Scholar 

  • Bigl, V., Woolf, N.J., and Butcher, L., 1982, Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. Bull.. 8:727.

    Article  PubMed  CAS  Google Scholar 

  • Blaker, W.D., Peruzzi, G., and Costa, E., 1984, Behavioral and neurochemical differentiation of specific projections in the septal- hippocampal cholinergic pathway of the rat, Proc. Natl. Acad. Sci 81:1880.

    Article  PubMed  CAS  Google Scholar 

  • Bostock, E., Gallagher, M., and King, R.A., 1988, Effects of opioid microinjections into the medial septal area on spatial memory in rats, Behavioral Neuroscience. 102:643.

    Article  PubMed  CAS  Google Scholar 

  • Breese, G.R., Frye, G.D., McCown, T.J., and Mueller, R.A., 1984, Comparisons of CNS effects induced by TRH and bicuculline after microinjection into medial septum, substantia nigra and inferior colliculus: absence of support for a GABA antagonist action of TRH, Pharmacol. Biochem. Behav.. 21:145.

    Article  CAS  Google Scholar 

  • Brioni, J.D., Decker, M.W., Gamboa, L.P., Izquierdo, I., and McGaugh, J.L., 1990, Muscimol injections in the medial septum impair spatial learning, Brain Research. 522:227.

    Article  PubMed  CAS  Google Scholar 

  • Chrobak, J.J. and Napier, T.C., 1989, Vehicle infusion into the basal forebrain produces task-specific cognitive deficits in the rat, Soc. Neurosci. Abs. 20.

    Google Scholar 

  • Chrobak, J.J., and Napier, T.C., 1990, Intraseptal administration of bicuculline produces working memory impairments in the rat, Behav. Neural Bio., in press.

    Google Scholar 

  • Chrobak, J.J., and Walsh, T.J., Dose and delay dependent working/episodic memory impairments following intraventricular administration of AF64A, submitted.

    Google Scholar 

  • Chrobak, J.J., Hanin, I., and Walsh, T.J., 1986, AF64A (ethylcholine aziridinium ion), a cholinergic neurotoxin, selectively impairs working memory in a multiple component T-maze task. Brain Research. 414:14.

    Google Scholar 

  • Chrobak, J.J. Hanin, I., Schmechel, D.E., and Walsh, T.J., 1988, AF64A- induced working memory impairment: behavioral, neurochemical and histological correlates. Brain Research. 463:107.

    Article  PubMed  CAS  Google Scholar 

  • Chrobak, J.J. Spates, M., Stackman, R.W., and Walsh, T.J., 1989a, Hemicholinium-3 prevents the working memory impairments and the cholinergic hypofunction induced by ethylcholine aziridinium ion (AF64A), Brain Research. 504:269.

    Article  PubMed  CAS  Google Scholar 

  • Chrobak, J.J., Stackman, R.W., and Walsh, T.J., 1989b, Intraseptal administration of muscimol produces dose-dependent memory impairments in the rat, Behav. Neural Bio.. 52:357.

    Article  CAS  Google Scholar 

  • Costa, E., Panula, P., Thompson, H.K., and Cheney, D.L., 1983, The transynaptic regulation of the septal-hippocampal cholinergic neurons. Life Sciences. 32:165.

    Article  PubMed  CAS  Google Scholar 

  • Curti, D., and Marchbanks, R.M., 1984, Kinetics of irreversible inhibition of choline transport in synaptosomes by ethylcholine mustard aziridinium, J. Membrane Biol 82:259.

    Article  CAS  Google Scholar 

  • Dinopoulos, A., Parnavelas, J.G., Uylings, H.B.M., and Van Eden, C.G., 1988, Morphology of neurons in the basal forebrain nuclei of the rat: a golgi study, J. comp. Neurol 272:461.

    Article  PubMed  CAS  Google Scholar 

  • Durkin, T., 1989, Central cholinergic pathways and learning and memory processes: presynaptic aspects. Comp. Biochem. Phsyiol., 93:273.

    Article  CAS  Google Scholar 

  • Elrod, K., and Buccafusco, J.J., 1988, Microinjection of vehicle into the nucleus basalis magnocellularis results in task-specific impairment of passive avoidance responding, Res. Comm. Psychol. Psychiat. Behav., 13:271.

    Google Scholar 

  • Emerich, D.F., and Walsh, T.J., 1990, Ganglioside AGF2 promotes task- specific recovery and attenuates the cholinergic hypofunction induced by AF64A, Brain Research. 527:299.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R.S., Buchwald, N.A., Hull, C.D., and Levine, M.S., 1988, GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons, J. comp. Neurol 272:489.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T.F., and Antal, M., 1988, GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336:170.

    Article  PubMed  CAS  Google Scholar 

  • Gaffan, D., 1985, Hippocampus: memory, habit and voluntary movement, Philos. Trans. R. Soc. London Ser. B. 308:87.

    Article  CAS  Google Scholar 

  • Gaykema, R.P.A., Luiten, P.G.M., Nyakas, C., and Traber, J., 1990, Cortical patterns of the medial septum-diagonal band complex, J. comp. Neurol 293:103.

    Article  PubMed  CAS  Google Scholar 

  • Gower, A.J., Rousseau,D, Jamsin, P., Gobert, J., Hanin, I., and Wulfert, E., 1989, Behavioural and histological effects of low concentrations of intraventricular AF64A, Eur. J. Pharmacol 166:271.

    Article  PubMed  CAS  Google Scholar 

  • Hagan, J.J., and Morris, R.G.M., 1988, The cholinergic hypothesis of memory: a review of animal experiments, in “Handbook of Psychopharmacology, Volume 20, Psychopharmacology of the Aging Nervous System,” L.L. Iversen, S.D. Iversen, and S.H. Snyder, eds., Plenum Press, New York, pp. 237–323.

    Google Scholar 

  • Hanin, I., 1990, AF64A-induced cholinergic hypofunction, in “Cholinergic Neurotransmission: Functional and Clinical Aspects,” S-M. Aquilonius and P. G. Gillberg, eds., Elsevier Science Publishers. B.V., Amsterdam, pp. 289–299.

    Chapter  Google Scholar 

  • Hanin, I., Fisher, A., Hortnagl, H., Leventer, S.M., Potter, P.E., and Walsh, T.J., 1987, Ethylcholine mustard aziridiniiun (AF64A; ECMA) and other potential cholinergic neuron-specific neurotoxins, in “Psychopharmacology- The Third Generation of Progress,” H.Y. Meitzer, ed.. Raven, New York, pp. 341–349.

    Google Scholar 

  • Hepler, D.J., Olton, D.S., Wenk, G.L., andCoyle, J.T., 1985, Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments, J. Neurosci 5:866.

    PubMed  CAS  Google Scholar 

  • Ingham, C.A., Bolam, J.P., and Smith, A.D., 1988, GABA-immunoreactive synaptic boutons in the rat basal forebrain: comparison of neurons that project to the neocortex with pallidosubthalamic neurons, J. comp. Neurol 273:263.

    Article  PubMed  CAS  Google Scholar 

  • Jarrard, L.E., Kant, G.J., Meyerhoff, J. C., and Levy, A., 1984, Behavioral and neurochemical effects of intraventricular AF64A administration in rats, Pharmacol. Biochem. Behav.. 21:273.

    Article  CAS  Google Scholar 

  • Kafetzopoulos, E., Holzhauer, M.S., and Huston, J.P., 1986, Substance P injected into the region of the nucleus basalis magnocellularis facilitates performance of an inhibitory avoidance task, Psvchopharm 90:281.

    CAS  Google Scholar 

  • Kohier, C.,and Chan-Palay, V., 1983, Distribution of gamma aminobutyric acid containing neurons and terminals in the septal area, Anat. Embryol., 167:53.

    Article  Google Scholar 

  • Kohier, C., Chan-Palay, V., and Wu, J-Y., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain, Anat. Embrvol.. 169:41.

    Article  Google Scholar 

  • Lamour, Y. and Epelbaum, J., 1988, Interactions between cholinergic and peptidergic systems in the cerebral cortex and hippocampus, Progress in Neurobiology. 31:109.

    Article  PubMed  CAS  Google Scholar 

  • Leranth, C., and Frotscher, M., 1989, Organization of the septal region in the rat brain: cholinergic-gabaergic interconnections and the termination of hippocampo-septal fibers, J. comp. Neurol 289:304.

    Article  PubMed  CAS  Google Scholar 

  • McGaugh, J.L., 1989, Dissociating learning and performance: drug and hormone enhancement of memory storage. Brain Res. Bull.. 23:339.

    Article  PubMed  CAS  Google Scholar 

  • Meibach, R.C., and Siegal, A., 1977, Efferent connections of the hippocampal formation in the rat. Brain Res.. 124:197.

    Article  PubMed  CAS  Google Scholar 

  • Mishkin, M., 1982, A memory system in the monkey, Philos. Trans. R. Soc. London Ser. B.. 298:85.

    Article  Google Scholar 

  • Mogenson, G.J., 1987, Limbic and motor integration, in “Progress in Psychobiology and Physiological Psychology, Volume 12,” J.N. Sprague and A.N. Epstein, eds.. Academic Press, New York, pp. 117- 170.

    Google Scholar 

  • Murray, C.L., and Fibiger, H.C., 1985, Learning and memory deficits after lesions of the nucleus basalis magnocellularis: reversal by physostigmine, Neuroscience. 14:1025.

    Article  PubMed  CAS  Google Scholar 

  • Nagel, J.A., and Huston, J.P., 1988, Enhanced inhibitory avoidance learning produced by post-trial injections of substance P into the basal forebrain, Behav. Neural Biol.. 49:374.

    Article  CAS  Google Scholar 

  • Napier, T.C., and Marx, K., 1987, Enkephalin unilaterally microinjected into the ventral pallidal/nucleus basalis induces circling, Neurosci. Abstr., 13:445.

    Google Scholar 

  • Napier, T.C., An, D., Austin, M.C., and Kalivas, P.W., 1988, Opiates microinjected into the ventral pallidum/substantia innominata (VP/SI) produce locomotor responses that involve dopaminergic systems. Neurosci. Abstr.. 15:1173

    Google Scholar 

  • Nauta, W.J.H., Smith, G.P., Gaull, R.L.M., and Domesick, V.B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neurosci.. 3:385.

    Article  CAS  Google Scholar 

  • Nyakas, C., Luiten, P.G.M., Spencer, D.G., and Traber, J., 1987, Detailed projection patterns of septal and diagonal band efferents to the hippocampus in the rat with emphasis on innervation of CAl and dentate gyrus. Brain Res. Bull.. 18:533.

    Article  PubMed  CAS  Google Scholar 

  • Olton, D.S., 1986, Hippocampal function and memory for temporal context in “The Hippocampus, Volume 4,” R.L. Isaacson and K. Pribram, eds.. Plenum Press, New York, pp. 316–348.

    Google Scholar 

  • Olton, D.S., and Wenk, G.L., 1987, Dementia: animal models of the cognitive impairments produced by degeneration of the basal forebrain cholinergic system, in “Psychopharmacology: The Third Generation of Progress,” H.Y. Meitzer (ed), Raven Press, New York, pp. 941–953.

    Google Scholar 

  • Pittel, Z., Fisher, A., and Heldman, E., 1987, Reversible and irreversible inhibition of high-affinity choline transport caused by ethylcholine aziridinium ion, J. Neurochem.. 49:468.

    Article  PubMed  CAS  Google Scholar 

  • Potter, P.E., Tedford, C.E., Kindel, G.H., and Hanin, I., 1989, Inhibition of high affinity choline transport attenuates both cholinergic and non-cholinergic effects of ethylcholine aziridinium (AF64A), Brain Res., 13:283.

    Google Scholar 

  • Pope, C.N., Ho, B.T., and Wright, A.A., 1987, Neurochemical and behavioral effects of N-ethyl-acetylcholine aziridinium chloride in mice, Pharmacol. Biochem. Behav., 26:365.

    Article  CAS  Google Scholar 

  • Pribram, K., 1986, The hippocampal system and recombinant processing, in “The Hippocampus, Volume 4,” R.L. Isaacson and K. Pribram, eds., Plenum Press, New York, pp. 329–369.

    Chapter  Google Scholar 

  • Price, J.L., and Stern, R., 1983, Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain. Res.. 269:352.

    Article  PubMed  CAS  Google Scholar 

  • Raisman, G., 1966, The connections of the septum. Brain. 9:317.

    Article  Google Scholar 

  • Robbins, T.W., Everitt, B.J., Marston, H.M., Wilkinson, J., Jones, G.H., and Page, K.J., 1989, Comparative effects of ibotenic acid- and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes, Behav. Brain Res.. 35:221.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S.E., Hambrecht, K.L., and Lyeth, B.C., 1988, Basal forebrain carbachol injection reduces cortical acetylcholine turnover and disrupts memory, Brain Res 445:160.

    Article  PubMed  CAS  Google Scholar 

  • Roitblat, H.L., 1982, The meaning of representations in animal memory, Behav. Brain Sci., 5:353.

    Article  Google Scholar 

  • Rye, D.B., Wainer, B.H., Mesulam, M-M, Mufson, E.J., and Saper, C.B., 1984, Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase, Neurosci.. 13:627.

    Article  CAS  Google Scholar 

  • Rylett, R.J., and Colhoun, E.H., 1980, Kinetic data on the inhibition of high-affinity choline transport into rat forebrain synaptosomes by choline-like compounds and nitrogen mustard analogues, J. Neurochem 34:713.

    Article  PubMed  CAS  Google Scholar 

  • Saper, C.B., 1987, Diffuse cortical projection systems: anatomical organization and role in cortical function, in “Handbook of Physiology, Section 1, The Nervous System, Vol. 5, Part 1,” V.B. Mountcastle, F. Plum, and S.R. Geiger, eds., Am. Physiol. Soc., Bethesda, pp. 169–210.

    Google Scholar 

  • Sherry, D.F., and Schacter, D.L., 1987, The evolution of multiple memory systems. Psych. Rev.. 98:439.

    Article  Google Scholar 

  • Staubli, U., and Huston, J.P., 1980, Facilitation of learning post-trial injection of substance P into the medial septal nucleus, Behav. Br. Res.. 1:245.

    CAS  Google Scholar 

  • Swanson, L.W., and Kohier, C., 1986, Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat, J. Neurosci 6:3010.

    PubMed  CAS  Google Scholar 

  • Swanson, L.W., and Cowan, W.M., 1979, The connections of the septal region in the rat, J. comp. Neurol 186:621.

    Article  PubMed  CAS  Google Scholar 

  • Squire, L.R., 1987, “Memory and Brain,” Oxford Univ. Press, London and New York.

    Google Scholar 

  • Tedford, C.E., Lorens, S.A., Corey, J.C., Lokhorst, D., Kindel, G., Wulfert, E., and Hanin, I., Behavioral and neurochemical effects of AF64A in young and old fisher-344 male rats, in “Alzheimer’s and Parkinson’s Diseases: Basic and Therapeutic Strategies,” M. Yoshida, A. Fisher and T. Nagatsu, eds., Plenum Press, NY (in press).

    Google Scholar 

  • Thomas, G.J., and Gash, D.M., 1986, Differential effects of posterior septal lesions on dispositional and representational memory, Behav. Neurosci.. 100:712.

    Article  PubMed  CAS  Google Scholar 

  • Tulving, E., 1983, “Elements of Episodic Memory”, Clarendon Press, Oxford, England.

    Google Scholar 

  • Uney J.B., and Marchbanks, R.M., 1987, Specificity of ethylcholine mustard aziridinivim as an irreversible inhibitor of choline transport in cholinergic and noncholinergic tissue, J. Neurochem 48:1673.

    Article  PubMed  CAS  Google Scholar 

  • Van Hoesen, G.W., and Damasio, A.R., 1987, Neural correlates of cognitive impairment in Alzheimer’s disease, in “Handbook of Physiology, Section 1, The Nervous System, Vol. 5, Part 1,” V.B. Mountcastle, F. Plum, and Geiger, S.R., eds., Am. Physiol. Soc., Bethesda, pp. 871- 898.

    Google Scholar 

  • Walsh, T.J., and Chrobak, J.J., 1990, Animal models of Alzheimer’s disease: role of hippocampal cholinergic system in working memory, in “Current Topics in Animal Learning: Brain, Emotion & Cognition,” L. Dachowsky and C. Flaherty, eds., Erlbaum, Hillsdale, New Jersey, pp. 347–379.

    Google Scholar 

  • Walsh, T.J., Tilson, H.A., DeHaven, D.L., Mailman, R.B., Fisher, A., and Hanin, I., 1984, AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long- term passive avoidance and radial-arm maze deficits in the rat. Brain Research, 321:91–102.

    Article  PubMed  CAS  Google Scholar 

  • Weiskrantz, L., 1982, Comparative aspects of studies of amnesia, Philos. Trans. R. Soc. London Ser. B. 298:97.

    Article  CAS  Google Scholar 

  • Wood, P.L., and McQuade, P., 1986, Substantia innominata - cortical cholinergic pathway: regulatory afferents, in “Dynamics of Cholinergic Function,” I. Hanin, ed.. Plenum Press, New York, pp. 999–1006.

    Google Scholar 

  • Zaborsky, L., Heimer, L., Eckenstein, F., and Leranth, C., 1986, GABA ergic input to cholinergic forebrain neurons: an ultrastructural study using retrograde tracing of HRP and double immuno labe ling, J comp. Neurol.. 250:282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Chrobak, J.J., Napier, T.C., Hanin, I., Walsh, T.J. (1991). The Pharmacology of Basal Forebrain Involvement in Cognition. In: Napier, T.C., Kalivas, P.W., Hanin, I. (eds) The Basal Forebrain. Advances in Experimental Medicine and Biology, vol 295. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0145-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0145-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0147-0

  • Online ISBN: 978-1-4757-0145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics