Skip to main content

Classical Trajectory Methods in Molecular Collisions

  • Chapter
Dynamics of Molecular Collisions

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 2))

Abstract

The dynamics of a molecular scattering process is described in exact terms by the solutions to the Schrödinger equation in which the kinetic energy and the electrodynamical interactions of all the nuclei and electrons of the colliding partners are used. If the process to be studied can be assumed to be adiabatic, the Born-Oppenheimer separation can be invoked, and the Schrödinger equation for the scattering is reduced to the problem of nuclear motion on a potential energy surface known as a function of all the internuclear distances. The accuracy of quantum mechanical calculations of the measurable attributes of molecular collisions is limited only by the accuracy of the potential energy surface and by the number of basis functions that can be afforded in terms of computer core storage size and processing time. The technical and economic questions are therefore

  1. 1

    How accurate must a calculation be in order to test predictions of a given theory against a given experimental result, and how is this accuracy most efficiently achieved?

  2. 2

    What calculational expense is commensurate with the scientific value of the result?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. W. H. Miller, Classical S matrix for rotational excitation: Quenching of quantum effects in molecular collisions, J. Chem. Phys. 54, 5386–5397 (1971).

    Article  CAS  Google Scholar 

  2. R. A. Marcus, Extension of the WKB method to wave functions and transition probability amplitudes (S-matrix) for inelastic or reactive collisions, Chem. Phys. Lett. 7, 525–532 (1970).

    Article  CAS  Google Scholar 

  3. W. H. Miller, Semiclassical theory of atom–diatom collisions: Path integrals and the classical S-matrix, J. Chem. Phys. 53, 1949–1959 (1970).

    Article  CAS  Google Scholar 

  4. R. A. Marcus, Theory of semiclassical transition probabilities for inelastic and reactive collisions. V. Uniform approximation in multidimensional systems, J. Chem. Phys. 57, 4903–4909 (1972).

    Article  CAS  Google Scholar 

  5. W. H. Miller, Classical-limit quantum mechanics and the theory of molecular collisions, Adv. Chem. Phys. 25, 69–177 (1974).

    Article  Google Scholar 

  6. M. Karplus, R. N. Porter, and R. D. Sharma, Dynamics of reactive collisions: The H + H2 exchange reaction, J. Chem. Phys. 40, 2033–2034 (1964).

    Article  CAS  Google Scholar 

  7. M. Karplus, R. N. Porter, and R. D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for H, H2), J. Chem. Phys. 43, 3259–3287 (1965).

    Article  CAS  Google Scholar 

  8. M. Karplus, R. N. Porter. and R. D. Sharma, Energy dependence of cross sections for hot tritium reactions with hydrogen and deuterium molecules, J. Chem. Phys. 45, 3871–3873 (1966).

    Article  CAS  Google Scholar 

  9. M. Karplus, L. G. Pedersen, R. N. Porter, R. D. Sharma, and D. L. Thompson, unpublished.

    Google Scholar 

  10. A. Kuppermann and J. M. White, Energy threshold for D+H2 -* DH + H reaction, J. Chem. Phys.44, 4352–4354 (1966).

    Google Scholar 

  11. D. Seewald, M. Gersh, and R. Wolfgang, Exchange between atomic and molecular hydrogen at energies above threshold, J. Chem. Phys. 45, 3870–3871 (1966).

    Article  CAS  Google Scholar 

  12. C. C. Chou and F. S. Rowland, Exchange reactions of 2.8-eV tritium atoms with isotopic molecular hydrogen—H2, D2, and HD, J. Chem. Phys. 46, 812–813 (1967).

    Article  CAS  Google Scholar 

  13. C. C. Chou and F. S. Rowland, Threshold energy for substitution of T for D in CD4, J. Chem. Phys. 50, 2763–2764 (1969).

    Article  CAS  Google Scholar 

  14. C. C. Chou and F. S. Rowland, Reactions of 2.8-eV tritium atoms with methane, J. Chem. Phys. 50, 5133–5140 (1969).

    Article  CAS  Google Scholar 

  15. M. E. Gersh and R. B. Bernstein, Measurement of the energy dependence of the cross section for the reaction K+ CH3I -> KI+CH3 from 0.1–1 eV, J. Chem. Phys. 55, 4661 (1971).

    Article  CAS  Google Scholar 

  16. M. E. Gersh and R. B. Bernstein, Translational energy dependence of the reaction cross section for K+CH3I-* KI+CH3 from 0.1 to 1 eV (c.m.), J. Chem. Phys. 56, 6131–6146 (1972).

    Article  CAS  Google Scholar 

  17. D. L. Bunker and E. A. Goring, Rb+CH3I: Empirically determined potential and predicted cross sections for reactive scattering, Chem. Phys. Lett. 15, 521–523 (1972).

    Article  CAS  Google Scholar 

  18. R. A. LaBudde, P. J. Kuntz, R. B. Bernstein, and R. D. Levine, Classical trajectory study of the K + CH3I reaction, J. Chem. Phys. 59, 6286–6298 (1973).

    Article  CAS  Google Scholar 

  19. R. M. Harris and D. R. Herschbach, Comment in Discuss. Faraday Soc. 55, 121–123 (1973).

    Google Scholar 

  20. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. II. Dependence on the potential energy surface, J. Chem. Phys. 56, 2997–3006 (1972).

    Article  CAS  Google Scholar 

  21. T. P. Schafer, P. E. Siska, J. M. Parson, F. P. Tully, Y. C. Wong, and Y. T. Lee, Crossed Molecular beam study of F + D2, J. Chem. Phys. 53, 3385–3387 (1970).

    Article  CAS  Google Scholar 

  22. R. A. LaBudde and R. B. Bernstein, Classical study of rotational excitation of a rigid rotor: Li+ + H2, J. Chem. Phys. 55, 5499–5516 (1971).

    Article  Google Scholar 

  23. R. A. LaBudde and R. B. Bernstein, Classical study of rotational excitation of a rigid rotor: Li+ + H2. II. Correspondence with quantal results, J. Chem. Phys. 59, 3687–3691 (1973).

    Article  CAS  Google Scholar 

  24. D. L. Thompson, On a classical trajectory study of energy transfer in some atom-diatomic molecule systems, J. Chem. Phys. 56, 3570–3580 (1972).

    Article  CAS  Google Scholar 

  25. I. W. M. Smith and P. M. Wood, Vibrational relaxation in atom-exchange reactions: A classical, Monte-Carlo, trajectory study, Mol. Phys. 25, 441–454 (1973).

    Article  Google Scholar 

  26. K. G. Anlauf, P. J. Kuntz, D. H. Maylotte, P. D. Pacey, and J. C. Polanyi, Energy distribution among reaction products. Part 2. H+ X2 and X+HY, Discuss. Faraday Soc. 44, 183–193 (1967).

    Article  Google Scholar 

  27. J. C. Polanyi, Some concepts in reaction dynamics, Acc. Chem. Res. 5, 161–168 (1972).

    Article  CAS  Google Scholar 

  28. J. C. Polanyi and J. L. Schreiber, The dynamics of bimolecular reactions, in: Physical Chemistry—An Advanced Treatise, (H. Eyring, W. Jost, and D. Henderson, eds.), Vol. 6A, “Kinetics of Gas Reactions,” Chap. 6, pp. 383–487, Academic Press, Inc., New York (1974).

    Google Scholar 

  29. R. D. Levine and R. B. Bernstein, Energy disposal and energy consumption in elementary chemical reactions: The information theoretic approach, Acc. Chem. Res. 7, 393–400 (1974).

    Article  CAS  Google Scholar 

  30. D. L. Thompson and D. R. McLaughlin, A quasiclassical trajectory study of the H2 + F2 reaction, J. Chem. Phys. 62, 4284–4299 (1975).

    Article  CAS  Google Scholar 

  31. D. L. Bunker, Monte-Carlo calculation of triatomic dissociation rates. I. N2O and 03, J. Chem. Phys. 37, 393–403 (1962).

    Article  CAS  Google Scholar 

  32. D. L. Bunker, Monte-Carlo calculations. IV. Further studies of unimolecular dissociation, J. Chem. Phys. 40, 1946–1957 (1964).

    Article  CAS  Google Scholar 

  33. D. L. Bunker and W. L. Hase, On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular, J. Chem. Phys. 59, 4621–4632 (1973).

    Article  CAS  Google Scholar 

  34. R. N. Porter, Theoretical studies of hot-atom reactions. I. General formulation, J. Chem. Phys. 45, 2284–2291 (1966).

    Article  CAS  Google Scholar 

  35. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. III. The hot-atom reactions of 8F with HD, J. Chem. Phys. 57, 3388–3396 (1972).

    Article  CAS  Google Scholar 

  36. L. M. Raff, Theoretical investigations of the reaction dynamics of polyatomic systems: Chemistry of the hot atom (T* + CH4) and (T* + CD4) systems, J. Chem. Phys. 60, 2220–2244 (1974).

    Article  CAS  Google Scholar 

  37. T. Valencich and D. L. Bunker, Trajectory studies of hot atom reactions. II. An unrestricted potential for CHs, J. Chem. Phys. 61, 21–29 (1974).

    Article  CAS  Google Scholar 

  38. H. Y. Su, J. M. White, L. M. Raff, and D. L. Thompson, Abstraction versus exchange in the reaction of H with DBr, J. Chem. Phys. 62, 1435–1433 (1975).

    Article  CAS  Google Scholar 

  39. R. N. Porter, L. B. Sims, D. L. Thompson, and L. M. Raff, Classical dynamical investigations of reaction mechanism in three-body hydrogen-halogen systems, J. Chem. Phys. 58, 2855–2869 (1973).

    Article  Google Scholar 

  40. L. M. Raff, D. L. Thompson, L. B. Sims, and R. N. Porter, Dynamics of the molecular and atomic mechanisms for the hydrogen-iodine exchange reactions, J. Chem. Phys. 56, 5998–6027 (1972).

    Article  CAS  Google Scholar 

  41. J. B. Anderson, Mechanism of the bimolecular (?) hydrogen-iodine reaction, J. Chem. Phys. 61, 3390–3393 (1974).

    Article  CAS  Google Scholar 

  42. D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).

    CAS  Google Scholar 

  43. R. N. Porter, Molecular trajectory calculations, Annu. Rev. Phys. Chem. 25, 317–355 (1974).

    Article  CAS  Google Scholar 

  44. V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Dover Publications, Inc., New York (1959).

    Google Scholar 

  45. H. Goldstein, Classical Mechanics, Addison-Wesley Publishing Company, Inc., Reading, Mass. (1950), Chap. 8, pp. 237–272.

    Google Scholar 

  46. Y. A. Schreider, The Monte-Carlo Method, Pergamon Press, Inc., Elmsford, N.Y. (1966).

    Google Scholar 

  47. H. H. Suzukawa, Jr., D. L. Thompson, V. B. Cheng, and M. Wolfsberg, Empirical testing of the suitability of a nonrandom integration method for classical trajectory calculations: Comparisons with Monte-Carlo techniques, J. Chem. Phys. 59, 4000–4008 (1973).

    Article  CAS  Google Scholar 

  48. C. B. Haselgrove, A method of numerical integration, Math. Comput. 15, 323–337 (1961).

    Article  Google Scholar 

  49. H. Conroy, Molecular Schrödinger equation. VIII. A new method for the evaluation of multidimensional integrals, J. Chem. Phys. 47, 5307–5318 (1967).

    Article  Google Scholar 

  50. V. B. Cheng, H. H. Suzukawa, Jr., and M. Wolfsberg, Investigations of a nonrandom numerical method for multidimensional integration, J. Chem. Phys. 59, 3992–3999 (1973).

    Article  CAS  Google Scholar 

  51. D. J. Mickish, Ab Initio Calculations on the Li and H3 Systems Using Explicitly Correlated Wave Functions and Quasirandom Integration Techniques, Ph.D. thesis, Oklahoma State University, Stillwater, Oklahoma (1970).

    Google Scholar 

  52. R. N. Porter, L. M. Raff, and W. H. Miller, Quasiclassical selection of initial coordinates and momenta for a rotating Morse oscillator, J. Chem. Phys. 63, 2214–2218 (1975).

    Article  CAS  Google Scholar 

  53. N. B. Slater, Vibrational characteristics of quasi-harmonic systems related to diatomic molecules, Proc. Leeds Philos. Lit. Soc. Sci. Sect. 8, 93–108 (1959).

    CAS  Google Scholar 

  54. E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John Wiley and Sons, Inc., New York (1966), Chap. 8, pp. 364–441.

    Google Scholar 

  55. S. Gill, A process for the step-by-step integration of differential equations in an automatic digital computing machine, Proc. Cambridge Philos. Soc. 47, 96–108 (1951).

    Article  Google Scholar 

  56. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill Book Company, New York (1956).

    Google Scholar 

  57. R. W. Hamming, Stable predictor corrector methods for ordinary differential equations, J. Assoc. Comput. Mach. 6, 37–47 (1959).

    Article  Google Scholar 

  58. P. Brumer, Stability concepts in the numerical solution of classical atomic and molecular scattering problems, J. Comput. Phys. 14, 391–419 (1974).

    Article  CAS  Google Scholar 

  59. P. Brumer and M. Karplus, Collision complex dynamics in alkali halide exchange reactions, Discuss. Faraday Soc. 55, 80–92 (1973).

    Article  CAS  Google Scholar 

  60. C. W. Gear, Hybrid methods for initial value problems in ordinary differential equations, SIAM J. Num. Anal. 2B, 69–86 (1965).

    Google Scholar 

  61. J. L. Schreiber, Classical Trajectory Studies of Chemical Reactions, Ph.D. thesis, University of Toronto, Toronto (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porter, R.N., Raff, L.M. (1976). Classical Trajectory Methods in Molecular Collisions. In: Miller, W.H. (eds) Dynamics of Molecular Collisions. Modern Theoretical Chemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0644-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0644-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0646-8

  • Online ISBN: 978-1-4757-0644-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics