Skip to main content

Hormonal Control of Gluconeogenesis

  • Chapter
Hormones and Energy Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 111))

Abstract

Gluconeogenesis is the process by which glucose and glycogen are synthesized in the animal body from noncarbohydrate precursors. The liver and the kidney are the two organs which carry out gluconeogenesis and gluconeogenic substrates include lactate, pyruvate, glycerol, and the glucogenic amino acids. Although all the natural amino acids except leucine and lysine are potentially glucogenic by virtue of the fact that they yield pyruvate, oxalacetate, aketoglutarate, succinyl-CoA, or fumarate during their catabolism, studies in the perfused liver indicate that only alanine, serine, proline, threonine, glutamine, asparagine, glutamate, aspartate, and arginine yield significant amounts of carbohydrate (Ross, Hems, and Krebs, 1967).

Investigator and Director, Howard Hughes Medical Institute Laboratories for the Studies of Metabolic Disorders. Unpublished studies supported by grants 5 P01 AM 07462, 1 R01 AM 18660, and 1 P17 AM 17026 from the National Institutes of Health, U.S. Public Health Service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlborg, G., Felig, P., Hagenfeldt, L., Handler, R., and Wahren, J. (1974). Substrate turnover during prolonged exercise in man. J. Clin. Invest. 53: 1080–1090.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, T.T., Muller, W.A., Brennan, M.F., and Cahill, G.F. Jr. (1974). Effect of glucagon on amino acid and nitrogen metabolism in fasting man. Metabolism 23: 805–814.

    Article  PubMed  CAS  Google Scholar 

  • Ashmore, J. and Weber, G. (1959). The role of hepatic glucose-6-phosphatase in the regulation of carbohydrate metabolism. Vit. and Horm. 17: 92–132.

    Google Scholar 

  • Assimacopoulos, F.D. (1976). Unpublished observations.

    Google Scholar 

  • Barnett, C.A. and Wicks, W.D. (1971). Regulation of phosphoenolpyruvate carboxykinase and tyrosine transaminase in hepatoma cell cultures. I. Effects of glucocorticoids, N6, 02’-di- butyryl cyclic adenosine 3’,5’-monophosphate and insulin in Reuber H35 cells. J. Biol. Chem. 246: 7201–7206.

    PubMed  CAS  Google Scholar 

  • Beavo, J.A., Hardman, J.D., and Sutherland, E.W. (1970). Hydroly-sis of guanosine and adenosine 3’,5’-monophosphates by rat and bovine tissues. J. Biol. Chem. 245: 5649–5655.

    PubMed  CAS  Google Scholar 

  • Blackshear, P.J., Holloway, P.A.H., and Alberti, K.G.M.M. (1974). The effects of starvation and insulin on the release of gluco-neogenesis substrates from the extra-splanchnic tissues in vivo. FEBS Lett. 48: 310–313.

    Article  CAS  Google Scholar 

  • Blair, J.B., Cimbala, M.A., Foster, J.L., and Morgan, R.A. (1976). Hepatic pyruvate kinase. Regulation by glucagon, cyclic adenosine 3’:5’-monophosphate and insulin in the perfused rat liver. J. BioZ. Chem. 251: 3756–3762.

    CAS  Google Scholar 

  • Blat, C. and Loeb, J.E. (1971). Effect of glucagon on phosphory-lation of some rat liver ribosomal proteins in vivo. FEBS Lett. 18: 124–126.

    Article  CAS  Google Scholar 

  • Brand, I.A. and Soling, H.D. (1975). Activation and inactivation of rat liver phosphofructokinase by phosphorylation-dephosphorylation. FEBS Lett. 57: 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, G.F. Jr. (1970). Starvation in man. N. Eng. J. Med. 282: 668–675.

    Article  CAS  Google Scholar 

  • Cahill, G.F. Jr., Herrera, M.G., Morgan, A.P., Soeldner, J.R., Steinke, J., Levy, P.L., Reichard, G.A. Jr., and Kipnis, D.M. (1966). Hormone-fuel interrelationships during fasting. J. Clin. Invest. 45: 1751–1769.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, M.D., Lacy, W.W., and Exton, J.H. (1976). Unpublished observations.

    Google Scholar 

  • Chan, T.M. (1976). Unpublished observations.

    Google Scholar 

  • Cherrington, A.D., Assimacopoulos, F.D., Harper, S.C., Corbin, J.D., Park, C.R., and Exton, J.H. (1976). Studies on the a-adrenergic activation of hepatic glucose output. II. Investiga- tion of the role of adenosine 3’:5’-monophosphate and adenosine 3’:5’-monophosphate-dependent protein kinase in the actions of phenylephrine in isolated hepatocytes. J. Biol.Chem. 251: 5209–5218.

    PubMed  CAS  Google Scholar 

  • Cherrington, A.D., Chiasson, J.L., Liljenquist, J.E., Jennings, A.S., Keller, U., and Lacy, W.W. (1976). The role of insulin and glucagon in the regulation of basal glucose production in the post absorptive dog. J. Clin. Invest. 58: 1407–1418.

    Article  PubMed  CAS  Google Scholar 

  • Cherrington, A.D. and Exton, J.H. (1976). Studies on the role of cAMP-dependent protein kinase in the actions of glucagon and catecholamines on liver glycogen metabolism. Metabolism 25: 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  • Cherrington, A.D., Liljenquist, J.E., and Chiasson, J.L. (1976). Unpublished findings.

    Google Scholar 

  • Chiasson, J.L., Cook, J., Liljenquist, J.E., and Lacy, W.W. (1974). Glucagon stimulation of gluconeogenesis from alanine in the intact dog. Amer. J. Physiol. 227: 19–23.

    PubMed  CAS  Google Scholar 

  • Chiasson, J.L., Liljenquist, J.E., Cherrington, A.D., Keller, U.,Sinclair-Smith, B.C., and Lacy, W.W. (1976). Unpublished findings.

    Google Scholar 

  • Chiasson, J.L., Liljenquist, J.E., Finger, F.E., and Lacy, W.W. (1976). Differential sensitivity of glycogenolysis and gluconeogenesis to insulin infusions in dogs. Diabetes 25: 283291.

    Google Scholar 

  • Chaisson, J.L., Liljenquist, J.E., Sinclair-Smith, B.C., and Lacy, W.W. (1975). Gluconeogenesis from alanine in normal postab-sorptive man: Intrahepatic stimulatory effect of glucagon. Diabetes 24: 574–584.

    Article  Google Scholar 

  • Clark, M.G., Kneer, N.M., Bosch, A.L., and Lardy, H.A. (1974). The fructose 1,6-diphosphatase-phosphofructokinase substrate cycle. A site of regulation of hepatic gluconeogenesis by glucagon. J. Biol. Chem. 249: 5695–5703.

    PubMed  CAS  Google Scholar 

  • Claus, T.H. and Pilkis, S.J. (1976). Regulation by insulin of gluconeogenesis in isolated rat hepatocytes. Biochim. Biophys. Acta 421: 246–262.

    Article  PubMed  CAS  Google Scholar 

  • Claus, T.H., Pilkis, S.J., and Park, C.R. (1975). Stimulation by glucagon of the incorporation of U-14C-labeled substrate into glucose by isolated hepatocytes from fed rats. Biochim. Biophys. Acta 404: 110–123.

    Article  PubMed  CAS  Google Scholar 

  • Ekman, P., Dahlquist, U., Humble, E., and Engstrom, L. (1976). Comparative studies on the L-type pyruvate kinase from rat liver and the enzyme phosphorylated by cyclic 3’,5’-AMP-stimulated protein kinase. Biochim. Biophys. Acta 429: 374–382.

    Article  PubMed  CAS  Google Scholar 

  • Exton, J.H. (1972). Progress in endocrinology and metabolism Gluconeogenesis. Metabolism 21: 945–990.

    Article  PubMed  CAS  Google Scholar 

  • Exton, J.H., Corbin, J.G., and Harper, S.C. (1972). Control of gluconeogenesis in liver. V. Effects of fasting, diabetes and glucagon on lactate and endogenous metabolism in the perfused rat liver. J. Biol. Chem. 247: 4996–5003.

    PubMed  CAS  Google Scholar 

  • Exton, J.H., Friedmann, N., Wong, E.H.A., Brineaux, J.P., Corbin, J.D., and Park, C.R. (1972). Interaction of glucocorticoids with glucagon and epinephrine in the control of gluconeogenesis and glycogenolysis in liver and of lipolysis in adipose tissue. J. Biol. Chem. 247: 3579–3588.

    PubMed  CAS  Google Scholar 

  • Exton, J.H. and Harper, S.C. (1975). Role of cyclic AMP in the actions of catecholamines in hepatic carbohydrate metabolism. pp. 519–532. In G.I. Drummond, P. Greengard, and G.A. Robison (Eds.) Advances in Cyclic Nucleotide Research, Vol 5. Raven Press, New York.

    Google Scholar 

  • Exton, J.H., Harper, S.C., Tucker, A.L., Flagg, J.L., and Park, C.R. (1973). Effects of adrenalectomy and glucocorticoid replacement on gluconeogenesis in perfused livers from diabetic rats. Biochim. Biophys, Acta 329: 41–57.

    CAS  Google Scholar 

  • Exton, J.H., Harper, S.C., Tucker, A.L., and Ho, R.J. (1973). Effects of insulin on gluconeogenesis and cyclic AMP levels in perfused livers from diabetic rats. Biochim. Biophys. Acta 329: 23–40.

    Article  PubMed  CAS  Google Scholar 

  • Exton, J.H., Lewis, S.B., Ho, R.J., and Park, C.R. (1972). The role of cyclic AMP in the control of hepatic glucose production by glucagon and insulin. PP. 91–101. In P. Greengard and G.A. Robison (Eds.) Advances in Cyclic Nucleotide Research, Vol. 1. Raven Press, New York.

    Google Scholar 

  • Exton, J.H., Miller, T.B. Jr., Harper, S.C., and Park, C.R. (1976). Carbohydrate metabolism in perfused livers of adrenalectomized and steroid-replaced rats. Am. J. Physiol. 230: 163–170.

    PubMed  CAS  Google Scholar 

  • Exton, J.H. and Park, C.R. (1968). Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3’,5’-monophosphate on gluconeogenesis in the perfused rat liver. J. Biol. Chem. 243: 4189–4196.

    PubMed  CAS  Google Scholar 

  • Exton, J.H. and Park, C.R. (1969). Control of gluconeogenesis in liver. III. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3’,5’-monophosphate on gluconeogenic intermediates in the perfused rat liver. J. Biol. Chem. 244: 1424–1433.

    PubMed  CAS  Google Scholar 

  • Exton, J.H., Ui, M., Lewis, S.B., and Park, C.R. (1971). Mecha-nism of glucagon activation of gluconeogenesis. pp. 160–178. In H-D Soling and B. Willms (Eds.) Regulation of GZuconeogenesis. Academic Press, New York.

    Google Scholar 

  • Fain, J.N. and Czech, M.P. (1975). Glucocorticoid effects on lipid mobilization and adipose tissue metabolism. pp. 169–178. In H. Blaschko, G. Sayers, and A.D. Smith (Eds.) Handbook of Physiology, Section 7: Endocrinology, Vol. 6 Adrenal gland. American Physiological Society, Washington, DC.

    Google Scholar 

  • Felig, P., Marliss, E.B., and Cahill, G.F. Jr. (1971). Metabolic response to human growth hormone during prolonged starvation. J. Clin. Invest. 50: 411–421.

    Article  PubMed  CAS  Google Scholar 

  • Felig, P., Owen, O.E., Wahren, J., and Cahill, G.F. Jr. (1969). Amino acid metabolism during prolonged starvation. J. Clin. Invest. 48: 584–594.

    Article  PubMed  CAS  Google Scholar 

  • Felig, P., Pozefsky, T., Marliss, E.B., and Cahill, G.F. Jr. (1970). Alanine: Key role in gluconeogenesis. Science 167: 1003–1004.

    Article  PubMed  CAS  Google Scholar 

  • Felig, P. and Wahren, J. (1971a). Amino acid metabolism in exercising man. J. Clin. Invest. 50: 2703–2714.

    Article  PubMed  CAS  Google Scholar 

  • Felig, P. and Wahren, J. (1971b). Influence of endogenous in-sulin secretion on splanchnic glucose and amino acid metabolism in man. J. Clin. Invest. 50: 1702–1711.

    Article  PubMed  CAS  Google Scholar 

  • Felig, P. and Wahren, J. (1975). Fuel homeostasis in exercise. N. Eng. J. Med. 293: 1078–1084.

    Article  CAS  Google Scholar 

  • Felig, P. Wahren, J., Hendler, R., and Ahlborg, G. (1972). Plasma glucagon levels in exercising man. N. Eng. J. Med. 287: 184185.

    Google Scholar 

  • Felui, J.E., Hue, L., and Hers, H-G. (1976). Hormonal control of pyruvate kinase activity and of gluconeogenesis in isolated hepatocytes. Proc. Nat. Acad. Sci. 73: 2762–2766.

    Article  Google Scholar 

  • Foster, D.O., Ray, P.D., and Lardy, H.A. (1966). Studies on the mechanisms underlying adaptive changes in rat liver phosphoenolpyruvate carboxykinase. Biochemistry 5: 555–562.

    Article  PubMed  CAS  Google Scholar 

  • Friedmann, B., Goodman, E.H. Jr., Saunders, H.L., Kostos, V., and Weinhouse, S. (1971). Regulation of metabolism in the liver. Estimation of pyruvate recycling during gluconeogenesis in perfused rat liver. Metabolism 20: 2–12.

    Article  Google Scholar 

  • Fulks, R.M., Li, J.B., and Goldberg, A.L. (1975). Effects of in-sulin, glucose, and amino acids on protein turnover in rat diaphragm. J. Biol. Chem. 250: 290–298.

    PubMed  CAS  Google Scholar 

  • Garber, A.J., Karl, I.E., and Kipnis, D.M. (1976). Alanine and glutamine synthesis and release from skeletal muscle. IV. ß-adrenergic inhibition of amino acid release. J. BioZ. Chem. 251: 851–857.

    CAS  Google Scholar 

  • Garber, A., Menzel, P.H., boden, G., and Owen, O.E. (1974). Hepatic ketogenesis and gluconeogenesis in humans. J. Clin. Invest. 54: 981–989.

    Article  PubMed  CAS  Google Scholar 

  • Gerich, J.E., Lorenzi, Pl., Bier, D.M., Tsalikian, E., Schneider, V., Karam, J.H., and Forsham, P.H. (1976). Effects of phy- siological levels of glucagon and growth hormone on human carbohydrate and lipid metabolism. J. Clin. Invest. 57: 875884.

    Google Scholar 

  • Gressner, A.M. and Wool, I.G. (1976). Influence of glucagon and cyclic adenosine 3’:5’-monophosphate on the phosphorylation of rat liver ribosomal protein S6. J. BioZ. Chem. 251: 1500 1504.

    Google Scholar 

  • Goodman, H.M. and Schwartz, J. (1974). Growth hormone and lipid metabolism. pp. 211–231. In E. Knobil and W.H. Sawyer (Ed.) Handbook of Physiology, Section 7: Endocrinology, Vol. 4, Part 2, The pituitary gland and its neuroendocrine control. American Physiological Society, Washington, DC.

    Google Scholar 

  • Gunn, J.H., Ballard, F.J., and Hanson, R.W. (1976). Influence of hormones and medium composition on the degradation of phos-phoenolpyruvate carboxykinase (GTP) and total protein in Reuber H35 cells. J. BioZ. Chem. 251: 3586–3593.

    CAS  Google Scholar 

  • Gunn, J.M., Hanson, R.W., Pleyuhas, 0., Reshef, L., and Ballard, F.J. (1975). Glucocorticoids and the regulation of phosphoenolpyruvate carboxykinase (guanosine triphosphate) in the rat. Biochem. J. 150: 195–203.

    CAS  Google Scholar 

  • Gunn, J.M. Tilghman, S.M., Hanson, R.W., Reshef, L., and Ballard, F.J. (1975). Effects of cyclic adenosine monophosphate, dexamethasone and insulin on phosphoenolpyruvate carboxykinase synthesis in Reuber H-35 hepatoma cells. Biochemistry 14: 2350–2357.

    CAS  Google Scholar 

  • Hanson, R.W. and Garber, A.J. (1972). Phosphoenolpyruvate carb-oxykinase. I. Its role in gluconeogenesis. Am. J. Clin. Nutr. 25: 1010–1021.

    PubMed  CAS  Google Scholar 

  • Hanson, R.W., Garber, A.J., Reshef, L., and Ballard, F.J. (1973). Phosphoenolpyruvate carboxykinase. II. Hormonal controls. Am. J. Clin. Nutr. 26: 55–63.

    PubMed  CAS  Google Scholar 

  • Hopgood, M.F., Ballard, F.J., Reshef, L., and Hanson, R.W. (1973). Synthesis and degradation of phosphoenolpyruvate carboxylase in rat liver and adipose tissue. Changes during a starvation-refeeding cycle. Biochemistry 134: 445–453.

    CAS  Google Scholar 

  • Hutson, N.J., Brumley, F.T., Assimacopoulos, F.D., Harper, S.C., and Exton, J.H. (1976). Studies on the a-adrenergic activation of hepatic glucose output. I. Studies on the a-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells. J. Biol. Chem. 251: 5200–5208.

    PubMed  CAS  Google Scholar 

  • Issekutz, B. Jr., Issekutz, A.C., and Nash, D. (1970). Mobiliza-tion of energy sources in exercising dogs. J. AppZ. Physiol. 29: 691–697.

    CAS  Google Scholar 

  • Jakob, A., and Diem, S. (1975). Metabolic responses of perfused rat livers to alpha-and beta-adrenergic agonists, glucagon and cyclic AMP. Biochim. Biophys. Acta 404: 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, L.S., Koehler, J.O., and Morgan, H.E. (1972). Effect of insulin on protein synthesis in skeletal muscle of an iso-lated perfused preparation of rat hemicorpus. Proc. Nat. Acad. Sci. 69: 816–820.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, L.S., Li, J.B., and Rannels, S.R. (1977). Regulation by insulin of amino acid release and protein turnover in the perfused rat hemicorpus. J. Biol. Chem. 252: 1476–1483.

    PubMed  CAS  Google Scholar 

  • Jefferson, L.S., Robertson, J.W., and Tolman, E.L. (1973). Ef- fects of hypophysectomy on lactate metabolism in the perfused rat liver. J. Biol. Chem. 248: 4561–4567.

    PubMed  CAS  Google Scholar 

  • Jefferson, L.S., Schworer, C.M., and Tolman, E.L. (1975). Growth hormone stimulation of amino acid transport and utilization by the perfused rat liver. J. Biol. Chem. 250: 197–204.

    PubMed  CAS  Google Scholar 

  • Jennings, A.S., Cherrington, A.D., Liljenquist, J.E., Keller, U., Lacy, W.W., and Chiasson, J.L. (1977). The roles of insulin and glucagon in the regulation of gluconeogenesis in the postabsorptive dog. Diabetes 26: 847–856.

    Article  PubMed  CAS  Google Scholar 

  • Kneer, N.M., Bosch, A.L., Clark, M.G., and Lardy, H.A. (1974). Glucose inhibition of epinephrine stimulation of hepatic gluconeogenesis by blockade of the a-receptor function. Proc. Nat. Acad. Sci. 71: 4523–4527.

    Article  PubMed  CAS  Google Scholar 

  • Kostyo, J.L. and Nutting, D.F. (1974). Growth hormone and pro-tein metabolism. pp. 187–210. In E. Knobil and W.W. Sawyer(Eds.) Handbook of Physiology. Section 7: Endrcrinology, Vol. 4, part 2. The pituitary gland and its neuroendocrine control. American Physiological Society, Washington, DC.

    Google Scholar 

  • Krebs, H.A. and Eggleston, L.V. (1965). The role of pyruvate kinase in the regulation of gluconeogenesis. Biochemistry 94: 30–40.

    Google Scholar 

  • Krone, W., Hubbner, W.B., Seitz, H.J., and Tarnowski, N. (1976). Induction of rat liver phosphoenolpyruvate carboxykinase (GTP) by cyclic AMP during starvation. The permissive actior. of glucocorticoids. Biochim. Biophys. Acta 437: 62–70.

    Article  PubMed  CAS  Google Scholar 

  • Langan, T. (1973). Protein kinases and protein kinase substrates. pp. 99–153. In P. Greengard and G.A. Robison (Eds.) Advances in Cyclic Nucleotide Research, Vol. 3. Raven Press, New York.

    Google Scholar 

  • Li, J.B. and Jefferson, L.S. (1977). Effect of isoproterenol on amino acid levels and protein turnover in skeletal muscle. Am. J. PhysioZ. 232: E243–249.

    CAS  Google Scholar 

  • Liljenquist, J.E., Bomboy, J.D., Lewis, S.B., Sinclair-Smith, B.C., Felts, P.N., Lacy, H.W. Crofford, 0.B., and Liddle, G.W. (1974). Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men. J. Clin. Invest. 53: 190–197.

    CAS  Google Scholar 

  • Liljenquist, J.E., Muller, G.L., Cherrington, A.D., Keller, U., Chiasson, J.L., Perry, J.M., Lacy, W.W., and Rabinowitz, D. (1977). Evidence for an important role of glucagon in the regulation of hepatic glucose production in normal man. J. Clin. Invest. 59: 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Long, C.N.N., Katzin, B., and Fry, E.G. (1940). The adrenal cor-tex and carbohydrate metabolism. Endocrinology 26: 309–344.

    Article  CAS  Google Scholar 

  • Loten, E.G., Assimacopoulos-Jeannet, F.D., Exton, J.H., and Park, C.R. (1976). Unpublished observations.

    Google Scholar 

  • Liungstrom, 0., Helmguist, G., and Engstrom, L. (1974). Phos-phorylation of purified rat liver pyruvate kinase by cyclic 3’,5’-AMP stimulated protein kinase. Biochim. Biophys. Acta 358: 289–298.

    Article  Google Scholar 

  • Mallette, L.E., Exton, J.H., and Park, C.R. (1969a). Control of gluconeogenesis from amino acids in the perfused rat liver. J. Biol. Chem. 244: 5713–5723.

    CAS  Google Scholar 

  • Mallette, L.E., Exton, J.H., and Park, C.R. (1969b). Effects of glucagon on amino acid transport and utilization in the per-fused rat liver. J. Biot. Chem. 244: 5724–5728.

    CAS  Google Scholar 

  • Manchester, K.L., Randle, P.J., and Young, F.G. (1959). The ef-fect of growth hormone and of cortisol on the response of isolated rat diaphragm to the stimulating effect of insulin on glucose uptake and on incorporation of amino acids into protein. J. Endocrinol. 18: 395–408.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T.B. Jr., Exton, J.H., and Park, C.R. (1971). A block in epinephrine-induced glycogenolysis in hearts from adrenalectomized rats. J. BioZ. Chem. 246: 3672–3678.

    CAS  Google Scholar 

  • Morgan, H.E., Jefferson, L.S., Wolpert, E.B., and Rannels. D.E. (1971). Regulation of protein synthesis in heart muscle. II. Effect of amino acid levels and insulin on ribosomal aggregation. J. Biol. Chem. 246: 2163–2170.

    PubMed  CAS  Google Scholar 

  • Morgan, H.E., Regen, D.M., Henderson, M.J., Sawyer, T.K., and Park, C.R. (1961). Regulation of glucose uptake in muscle. VI. Effects of hypophysectomy, adrenalectomy, growth hormone, hydrocortisone, and insulin on glucose transport and phosphorylation in the perfused rat heart. J. BioZ. Chem. 236: 2162–2168.

    CAS  Google Scholar 

  • Narahara, H.T. and Holloszy, J.0. (1974). The actions of insulin,trypsin and electrical stimulation on amino acid transport in muscle. J. Biol. Chem. 249: 5435–5443.

    PubMed  CAS  Google Scholar 

  • Newsholme, E.A. and Gevers, W. (1967). Control of glycolysis and gluconeogenesis in liver and kidney cortex. vit. and Horm. 25: 1–87.

    Article  CAS  Google Scholar 

  • Niemeyer, H., Perez, N., and Codoceo, R. (1967). Liver glucokin-ase induction in acute and chronic insulin insufficiency in rats. J. Biol. Chem. 242: 860–864.

    PubMed  CAS  Google Scholar 

  • Nordlie, R.C., Arion, !J.J., and Glende, E.A. Jr. (1965). Liver microsomal glucose-6-phosphatase, inorganic pyrophosphatase, and pyrophosphate-glucose phosphotransferase. IV. Effects of adrenalectomy and cortisone administration on activities assayed in the absence and presence of deoxycholate. J. Biol. Chem. 240: 3479–3484.

    PubMed  CAS  Google Scholar 

  • Odessey, R., Khairallah, E.A., and Goldberg, A.L. (1974). Originand possible significance of alanine production by skeletal 164 EXTON muscle. J. BioZ. Chem. 249: 7623–7629.

    CAS  Google Scholar 

  • Olefsky, J.M. (1975). Effect of dexamethasone on insulin bind-ing, glucose transport, and glucose oxidation of isolated rat adipocytes. J. Clin. Invest. 56: 1499–1508.

    Article  PubMed  CAS  Google Scholar 

  • Owen, 0.E., Felig, P., Morgan, A.P., Wahren, J., and Cahill, G.F. Jr. (1969). Liver and kidney metabolism during pro- longed starvation. J. Clin. Invest. 48: 574–583.

    Article  Google Scholar 

  • Palaiologos, G. and Felig, P. (1976). Effects of ketone bodies on amino acid metabolism in isolated rat diaphragm. Biochem. J. 154: 709–716.

    PubMed  CAS  Google Scholar 

  • Parrilla, R., Jimenez, I., and Ayuso-Parrilla, M.S. (1976). Cellular redistribution of metabolites during glucagon and insulin control of gluconeogenesis in the isolated perfused rat liver. Arch. Biochem. Biophys. 174: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Pilkis, S.J., Claus, T.H., Johnson, R.A., and Park, C.R. (1975). Hormonal control of cyclic 3’:5’-AMP levels and gluconeogene-sis in isolated hepatocytes from fed rats. J. Biol. Chem. 250: 6328–6336.

    PubMed  CAS  Google Scholar 

  • Pilkis, S.J., Riou, J.P., and Claus, T.H. (1976). Hormonal con-trol of [14C] glucose synthesis from [U-14C] dihydroxyacetone and glycerol in isolated rat hepatocytes. J. BioZ. Chem. 251: 7841–7852.

    CAS  Google Scholar 

  • Pointer, R.H., Butcher, F.R., and Fain, J.H. (1976). Studies on the role of cyclic guanosine 3’:5’-monophosphate and extra-cellular Ca++ in the regulation of glycogenolysis in rat liver cells. J. Biol. Chem. 251: 2987–2992.

    PubMed  CAS  Google Scholar 

  • Pozefsky, T., Felig, P., Tobin, J.D., Soeldner, J.S., and Cahill, G.F. Jr. (1969). Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J. Clin. Invest. 48: 2273–2282.

    Article  PubMed  CAS  Google Scholar 

  • Pozefsky, T., Tancredi, R.G., Moxley, R.T., Dupre, J., and Tobin, J.D. (1976). Effects of brief starvation on muscle amino acid metabolism in nonobese man. J. Clin. Invest. 57: 444–449.

    Article  PubMed  CAS  Google Scholar 

  • Rannels, S.R., Li, J•B., and Jefferson, L.S. (1976). Amino acid release and protein turnover in perfused skeletal muscle of fasted normal and adrenalectomized rats. Diabetes 25: 333.

    Google Scholar 

  • Ray, P.D., Foster, D.O., and Lardy, H.A. (1964). Mode of action of glucocorticoids 1. Stimulation of gluconeogenesis independent of synthesis de novo of enzymes. J. Biol. Chem. 239: 3396–3400.

    PubMed  CAS  Google Scholar 

  • Reshef, L., Ballard, F.J.,and Hanson, R.W. (1969). The role of the adrenals in the regulation of phosphoenolpyruvate carboxykinase of rat adipose tissue. J. Biol. Chem. 244: 5577–5581.

    CAS  Google Scholar 

  • Ross, B.D., Hems, R., and Krebs, H.A. (1967). The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem. J. 102: 942–951.

    PubMed  CAS  Google Scholar 

  • Rousseau, G.G., Martial, J., and DeVisscher, M. (1976). Activity and subcellular distribution of protein kinase dependent on adenosine 3’,5’-monophosphate in livers from normal and adrenalectomized rats. Eur. J. Biochem. 66: 449–506.

    Article  Google Scholar 

  • Ruderman, N.B. and Berger, M. (1974). The formation of glutamine and alanine in skeletal muscle. J. Biol. Chem. 249: 5500–5506.

    PubMed  CAS  Google Scholar 

  • Ruderman, I.B., Houghton, C.R.S., and Hems, R. (1971). Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem. J. 124: 639–651.

    PubMed  CAS  Google Scholar 

  • Russell, J.A. (1957). Effects of growth hormone on protein and carbohydrate metabolism. Am. J. Clin. Nutr. 5: 404–416.

    PubMed  CAS  Google Scholar 

  • Sanders, R.B. and Riggs, T.R. (1967). Effects of epinephrine on the distribution of two model amino acids in the rat. Mol. Pharmacol. 3: 352–358.

    PubMed  CAS  Google Scholar 

  • Scrutton, M.C. and Utter, M.F. (1968). The regulation of glycolysis and gluconeogenesis in animal tissues. Ann. Rev. Biochem. 37: 249–302.

    Article  CAS  Google Scholar 

  • Sherwin, R.S., Handler, R.G., and Felig, P. (1975). Effect of ketone infusions on amino acid and nitrogen metabolism in man. J. Clin. Invest. 55: 1382–1390.

    Article  PubMed  CAS  Google Scholar 

  • Shrago, E., Lardy, H.A., Nordlie, R.C., and Foster, D.O. (1963). Metabolic and hormonal control of phosphoenolpyruvate carboxykinase and malic enzyme in rat liver. J. Biol. Chem. 238: 31883192.

    Google Scholar 

  • Smith, O.K. and Long, C.N.H. (1967). Effect of cortisol on the plasma amino nitrogen of eviscerated adrenalectomized-diabetic rats. Endocrinology 80: 561–566.

    Article  PubMed  CAS  Google Scholar 

  • Soderling, T.R., Corbin, J.D., and Park, C.R. (1973). Regulation of adenosine 3’:5’-monophosphate-dependent protein kinase. II. Hormonal regulation of the adipose tissue enzyme. J. Biol. Chem. 248: 1822–1829.

    PubMed  CAS  Google Scholar 

  • Soderling, T.R. and Park, C.R. (1974). Recent advances in glyco-gen metabolism. pp. 283–333. In P. Greengard and G.A. Robison (Eds.) Advances in Cyclic Nucleotide Research, Vol. 4. Raven Press, New York.

    Google Scholar 

  • Steele, R. (1975). Influences of corticosteroids on protein and carbohydrate metabolism. pp. 136–167. In H. Blaschko, G. Sayers, and A.D. Smith (Eds.) Handbook of Physiology. Section 7: Endocrinology, Vol. 6. Adrenal Gland. American Physiological Society, Washington, DC.

    Google Scholar 

  • Steele, R. (1966). The influences of insulin on the hepatic metabolism of glucose. Ergeb. Physiol. 57: 91–189.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T., Harana, Y., Sue, F., and Morimura, H. (1967). Crystal-lization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues. J. Biochem. (Tokyo) 62: 71–91.

    CAS  Google Scholar 

  • Theinhaus, R., Tharandt, L., Zais, U., and Staib, W. (1975). Ein-fluss von glucocorticoiden auf die freisetzung von aminosauren des perfundierten hinterkorpers adrenalecktomierter ratten. Hoppe-SeyZer’s Z. Physiol. Chem. 356: 811–817.

    Article  Google Scholar 

  • Tilghman, S.M., Gunn, J.M., Fisher, L.M., Hanson, R.W., Reshef, L., and Ballard, F.J. (1975). Deinduction of phosphoenolpyruvate carboxykinase (guanosine triphosphate) synthesis in Reuber FI-35 cells. J. Biol. Chem. 250: 3322–3329.

    PubMed  CAS  Google Scholar 

  • Tilghman, S., Hanson, R.W., Reshef, L, Hopgood, M.F., and Ballard,F.J. (1974). Rapid loss of translatable messenger RNA of phosphoenolpyruvate carboxykinase during glucose repression in liver. Proc. Nat. Acad. Sci. 71: 1304–1308.

    Article  PubMed  CAS  Google Scholar 

  • Titanji, V.P.K., Zetterquist, P., and Engstrom, L. (1976). Regu-lation in vitro of rat liver pyruvate kinase by phosphorylation-dephosphorylation reactions, catalyzed by cyclic AMP dependent protein kinases and a histone phosphatase. Biochim. Biophys. Acta 422: 98–108.

    Article  PubMed  CAS  Google Scholar 

  • Tolbert, M.E.M., Butcher, F.R., and Fain, J.H. (1973). Lack of correlation between catecholamine effects on cyclic adenosine 3’:5’-monophosphate and gluconeogenesis in isolated rat liver cells. J. Biol. Chem. 248: 5686–5692.

    PubMed  CAS  Google Scholar 

  • Tolman, E.L., Schworer, C.M., and Jefferson, L.S. (1973). Effects of hypophysectomy on amino acid metabolism and gluconeogenesis in the perfùsed rat liver. J. Biol. Chem. 248: 4552–4560.

    PubMed  CAS  Google Scholar 

  • Ui, M., Claus, T.H., Exton, J.H., and Park, C.R. (1973). Studies on the mechanism of action of glucagon on gluconeogenesis. J. Biol. Chem. 248: 5344–5349.

    PubMed  CAS  Google Scholar 

  • Ui, P- 1., Exton, J.H., and Park, C.R. (1973). Effects of glucagons on glutamate metabolism in the perfused rat liver. J. Biol. Chem. 248: 5350–5359.

    CAS  Google Scholar 

  • Ureta, T., Radojkovic, J., and Niemeyer, H. (1970). Inhibition by catecholamines of the induction of rat liver glucokinase. J. Biol. Chem. 245: 4319–4824.

    Google Scholar 

  • Veneziale, C.M. (1971). Gluconeogenesis from fructose in isolated rat liver. Stimulation by glucagon. Biochemistry 10: 3443–3447.

    Article  PubMed  CAS  Google Scholar 

  • Vranic, M. and Wrenshall, G.A. (1969). Exercise, insulin, and glucose turnover in dogs. Endocrinology 85:165–171. Wahren, J. and Felig, P. (1975). Renal substrate exchange in human diabetes mellitus. Diabetes 24: 730–734.

    Google Scholar 

  • Wahren, J., Felig, P., Ahlborg, G., and Jorfeldt, L. (1971). Glucose metabolism during leg exercise in man. J. Clin. Invest. 50: 2715–2725.

    Article  PubMed  CAS  Google Scholar 

  • Wahren, J., Felig, P., Cerasi, E., and Luft, R. (1972). Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J. Clin. Invest. 51: 1870–1878.

    Article  PubMed  CAS  Google Scholar 

  • Wahren, J., Felig, P., Hendler, R., and Ahlborg, G. (1973). Glu-cose and amino acid metabolism during recovery after exercise. J. Appt. Physiol. 34: 838–345.

    CAS  Google Scholar 

  • Weber, G., Stamm, N.B., and Fisher, E.A. (1965). Insulin: In-ducer of pyruvate kinase. Science 149: 65–67.

    Article  PubMed  CAS  Google Scholar 

  • Wicks, W.D. (1971). Differential effects of glucocorticoids and adenosine 3’:5’-monophosphate on hepatic enzyme synthesis. J. Biol. Chem. 246: 217–233.

    PubMed  CAS  Google Scholar 

  • Wicks, W.D. (1969). Induction of hepatic enzymes by adenosine 3’,5’-monophosphate in organ culture. J. BioZ. Chem. 244:3941-n.

    Google Scholar 

  • Wicks, W.D., Lewis, W., and McKibbin, J.B. (1974). Interaction between hormones and cyclic AMP in regulating specific hepatic enzyme synthesis. Fed. Proc. 33: 1105–1111.

    PubMed  CAS  Google Scholar 

  • Wicks, W.D., Lewis, W., and McKibbin, J.B. (1972). Induction of phosphoenolpyruvate carboxykinase by N6,021-dibutyryl cyclic AMP in rat liver. Biochim. Biophys. Acta 264: 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Wicks, W.D. and McKibbin, J.B. (1972). Evidence for translational regulation of specific enzyme synthesis by N6,021-dibutyryl cyclic AMP in hepatoma cell cultures. Biochim. Biophys. Res. Commun. 48: 205–211.

    Article  CAS  Google Scholar 

  • Williamson, J.R. (1975). Effects of epinephrine on glycogenolysis and myocardial contractility. pp. 605–636. In H. Blaschko, G. Sayers, and A.D. Smith (Eds.) Handbook of Physiology. Sec-tion 7: Endocrinology, Vol. 6, Adrenal Gland. American Physiological Society, Washington, DC.

    Google Scholar 

  • Yeung, D. and Oliver, I.T. (1968). Induction of phosphopyruvate carboxylase in neonatal rat liver by adenosine 3’,5’-cyclic monophosphate. Biochemistry 7: 3231–3239.

    Article  PubMed  CAS  Google Scholar 

  • Young, J.W., Shrago, E., and Lardy, H.A. (1964). Metabolic con-trol of enzymes involved in lipogenesis and gluconeogenesis. Biochemistry 3: 1687–1692.

    Article  PubMed  CAS  Google Scholar 

  • Zapf, J., Waldvogel, M., and Froesch, E.R. (1973). Protein kinase and cyclic AMP-binding activities in liver and adipose tissue of normal streptozotocin-diabetic and adrenalectomized rats. FEBS Lett. 36: 253–256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Exton, J.H. (1979). Hormonal Control of Gluconeogenesis. In: Klachko, D.M., Anderson, R.R., Heimberg, M. (eds) Hormones and Energy Metabolism. Advances in Experimental Medicine and Biology, vol 111. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0734-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0734-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0736-6

  • Online ISBN: 978-1-4757-0734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics