Skip to main content

Gaussian Basis Sets for Molecular Calculations

  • Chapter
Methods of Electronic Structure Theory

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 3))

Abstract

In the following chapters the electronic structure of molecules will be discussed and the techniques of electronic structure calculations presented. Without exception the molecular electronic wave functions will be expanded in some convenient, but physically motivated, set of one-electron functions. Since the computational effort strongly depends on the number of expansion functions (see, e.g., the following chapters), the set of functions must be limited as far as possible without adversely affecting the accuracy of the wave functions. This chapter will discuss the choice of such functions for molecular calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Heitler and F. London, Wechselwirkung neutraler Atome und homopolar Bindung nach der Quantenmechanik, Z. Phys. 44, 455–472 (1927).

    Article  CAS  Google Scholar 

  2. E. Clementi and D. L. Raimondi, Atomic screening constants from SCF functions, J. Chem. Phys. 38, 2686–2689 (1963); He-Kr.

    Article  CAS  Google Scholar 

  3. E. Clementi, D. L. Raimondi and W. P. Reinhardt, Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons, J. Chem. Phys. 47, 1300–1307 (1967); Rb-Rn.

    Article  CAS  Google Scholar 

  4. S. Huzinaga and C. Arnau, Simple basis set for molecular wavefunctions containing first- and second-row atoms, J. Chem. Phys. 53, 451–452 (1970); He-Ar.

    Article  CAS  Google Scholar 

  5. E. Clementi, R. Matcha, and A. Veillard, Simple basis sets for molecular wavefunctions containing third-row atoms, J. Chem. Phys. 47, 1865–1866 (1967).

    Article  CAS  Google Scholar 

  6. S. C. Wang, The problem of the normal hydrogen molecule in the new quantum mechanics, Phys. Rev. 31, 579–586 (1928).

    Article  CAS  Google Scholar 

  7. N. Rosen, The normal state of the hydrogen molecule, Phys. Rev. 38, 2099–2114 (1931).

    Article  CAS  Google Scholar 

  8. C. A. Coulson and I. Fischer, Notes on the molecular orbital treatment of the hydrogen molecule, Philos. Mag. 40, 386–393 (1949).

    CAS  Google Scholar 

  9. W. A. Goddard III, Improved quantum theory of many-electron systems. II. The basic method, Phys. Rev. 157, 81–93 (1967).

    Article  CAS  Google Scholar 

  10. S. F. Boys, Electronic wavefunctions. I. A general method of calculation for the stationary states of any molecular system, Proc. R. Soc. London Ser. A, 200, 542–554 (1950).

    Article  CAS  Google Scholar 

  11. S. Huzinaga, Gaussian-type functions for polyatomic systems I, J. Chem. Phys. 42, 1293–1302 (1965).

    Article  Google Scholar 

  12. H. Preuss, Bemerkungen zum self-consistent-field-verfahren und zur Methode der Konfigurationenwechselwirkung in der Quantenchemie, Z. Naturforsch. 11, 823 (1956).

    Google Scholar 

  13. J. L. Whitten, Gaussian expansions of hydrogen atom wavefunctions, J. Chem. Phys. 39, 349 (1963).

    Article  CAS  Google Scholar 

  14. J. L. Whitten, Gaussian lobe function expansions of Hartree-Fock solutions for the first row atoms and ethylene, J. Chem. Phys. 44, 359 (1966).

    Article  CAS  Google Scholar 

  15. J. D. Petke, J. L. Whitten, and A. W. Douglas, Gaussian lobe function expansions of Hartree-Fock solutions for the second row atoms, J. Chem. Phys. 51, 256–262 (1969).

    Article  CAS  Google Scholar 

  16. S. Shih, R. J. Buenker, S. D. Peyerimhoff, and B. Wirsan, Comparison of Cartesian and lobe function Gaussian basis sets, Theor. Chim. Acta 18, 277–289 (1970).

    Article  CAS  Google Scholar 

  17. W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51,2657–2664 (1969); H, Li-F.

    Article  CAS  Google Scholar 

  18. W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. IV. Use of Gaussian expansions of Slater-type orbitals. Extension to second-row molecules, J. Chem. Phys. 52,2769–2773 (1970); Na-Ar.

    Article  CAS  Google Scholar 

  19. R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular orbital studies of organic molecules, J. Chem. Phys. 54, 724–728 (1971); H, C-F.

    Article  CAS  Google Scholar 

  20. W. J. Hehre and J. A. Pople, Self-consistent molecular-orbital methods. XIII. An extended Gaussian-type basis for boron, J. Chem. Phys. 56, 4233–4234 (1972).

    Article  CAS  Google Scholar 

  21. R. F. Stewart, Small Gaussian expansions of Slater-type orbitals, J. Chem. Phys. 52, 431–438 (1970).

    Article  CAS  Google Scholar 

  22. R. C. Raffenetti, Optimal even-tempered Gaussian atomic orbital bases: First row atoms, Int. J. Quant. Chem. 9S,289–295 (1975).

    Google Scholar 

  23. R. D. Bardo and K. Ruedenberg, Even tempered atcmic orbitals III. Economic deployment of Gaussian primitives in expanding atomic SCF orbitals, J. Chem. Phys. 59, 5956–5965 (1973).

    Article  CAS  Google Scholar 

  24. T. H. Dunning, Jr., Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first row atoms, J. Chem. Phys. 53, 2823–2833 (1970).

    Article  CAS  Google Scholar 

  25. R. C. Raffenetti, General contraction of Gaussian atomic orbitals: core, valence, polarization and diffuse basis sets; molecular integral evaluation, J. Chem. Phys.58, 4452–4458 (1973).

    Article  CAS  Google Scholar 

  26. S. Rothenberg and H. F. Schaefer III, Methane as a numerical experiment for polarization basis function selection, J. Chem. Phys. 54, 2765–2766 (1971).

    Article  Google Scholar 

  27. T. Vladimiroff, Comparison of the use of 3d polarization functions and bond functions in Gaussian Hartree—Fock calculations, J. Phys. Chem. 77, 1983–1985 (1973).

    Article  CAS  Google Scholar 

  28. S. Huzinaga, Approximate atomic wavefunctions. II., Department of Chemistry Technical Report, University of Alberta, Edmonton, Alberta, Canada 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dunning, T.H., Hay, P.J. (1977). Gaussian Basis Sets for Molecular Calculations. In: Schaefer, H.F. (eds) Methods of Electronic Structure Theory. Modern Theoretical Chemistry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0887-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0887-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0889-9

  • Online ISBN: 978-1-4757-0887-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics