Skip to main content

Organizational Concepts in the Central Motor Networks of Invertebrates

  • Chapter
Neural Control of Locomotion

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 18))

Abstract

Motor behavior is produced by central networks of neurons that can operate without the aid of sensory feedback. Such networks contain at least four classes of nerve cells; command, oscillator, coordinating and motor neurons. The properties of each of these classes are reviewed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alving, B.O., (1968) Spontaneous activity in isolated somata of Aplysia pacemaker neurons. J. Gen. Physiol. 51, 29–45.

    Article  Google Scholar 

  • Arbib, M.A., (1972) The Metaphorical Brain: An Introduction to Cybernetics as Artificial Intelligence and Brain Theory. Wiley-Interscience, New York.

    Google Scholar 

  • Arshaysky, Yu.I., Berkinblit, M.B., Fuxon, O.J., Gelfand, J.M. and Orlovsky, G.N., (1972) Origin and modulation in neurons of the ventral spino-cerebellar tract during locomotion. Brain Res. 43, 276–279.

    Article  Google Scholar 

  • Arvanataki, A. and Chalazonitis, N., (1968) “Electrical properties and temporal organization in oscillatory neurons (Aplysia),” In Symposium on Neurobiology of Invertebrates. (Salanki, J., ed.), Plenum, New York, (169–200).

    Google Scholar 

  • Atwood, H.L. and Wiersma, C.A.G., (1967) Command neurons in the crayfish central nervous system. J. Exp. Biol. 46, 249–261.

    Google Scholar 

  • Biology Today (1972) CRM Publishers, Del Mar, Calif., (554–555).

    Google Scholar 

  • Bowerman, R.F. and Larimer, J.L., (1974a) Command fibres in the circumoesophageal connectives of crayfish. I. Tonic fibres. J. Exp. Biol. 60, 95–117.

    Google Scholar 

  • Bowerman, R.F. and Larimer, J.L., (1974b) Command fibres in the circumoesophageal connectives of crayfish. II. Phasic fibres. J. Exp. Biol. 60, 119–134.

    Google Scholar 

  • Cohen, M.J., (1964) “The peripheral organization of sensory systems,” In Neural Theory and Modeling. (Reiss, R.F., ed.), Stanford Univ. Press, Stanford, (273–292).

    Google Scholar 

  • Connor, J.A., (1969) Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. J. Exp. Biol. 50, 275–217.

    Google Scholar 

  • Dagan, D., Vernon, L.H. and Hoyle, G., (1975) Neuromimes: selfexciting alternate firing pattern models. Science. 188, 1035–1036.

    Article  Google Scholar 

  • Davis, W.J., (1971) Functional significance of motoneuron size and soma position in swimmeret system of the lobster. J. Neurophysiol. 34, 274–288.

    Google Scholar 

  • Davis, W.J. and Ayers, J.L., (1972) Locomotion: control by positive feedback optokinetic responses. Science. 177 183–185.

    Google Scholar 

  • Davis, W.J. and Kennedy, D., (1972a) Command interneurons controlling swimmeret movements in the lobster. I. Types of effects on motoneurons. J. Neurophysiol. 35, 1–12.

    Google Scholar 

  • Davis, W.J. and Kennedy, D., (1972b) Command interneurons controlling swimmeret movements in the lobster. U. Interaction of effects on motoneurons. J. Neurophysiol. 35, 13–19.

    Google Scholar 

  • Davis, W.J. and Kennedy, D., (1972c) Command interneurons controlling swimmeret movements in the lobster. III. Temporal relationships among bursts in different motoneurons. J. Neurophysiol. 35, 20–29.

    Google Scholar 

  • Davis, W.J., (1973) “Neuronal organization and ontogeny in the lobster swimmeret system,” In Control of Posture and Locomotion. (Stein, R.B., Pearson, K.G., Smith, R.S. and Redford, J.B., eds.), Plenum, New York, (437–455).

    Google Scholar 

  • Davis, W.J., Siegler, M.V.S. and Mpitsos, G.J., (1973) Distributed neuronal oscillators and efference copy in the feeding system of Pleurobranchaea. J. Neurophysiol. 36, 258–274.

    Google Scholar 

  • Davis, W.J., Mpitsos, G.J., Siegler, M.V.S., Pinneo, J.M. and Davis, K.B., (1974) Neuronal substrates of behavioral hierarchies and associative learning in the mollusk Pleurobranchaea. Amer. Zool. 14, 1037–1050.

    Google Scholar 

  • Davis, W.J., Mpitsos, G.J. and Pinneo, J.M., (1974a) The behavioral hierarchy of the mollusk Pleurobranchaea. I. The dominant position of the feeding behavior. J. Comp. Physiol. 90, 207–224.

    Article  Google Scholar 

  • Davis, W.J., Mpitsos, G.J. and Pinneo, J.M., (1974b) The behavioral hierarchy of the mollusk Pleurobranchaea. II. Hormonal suppression of feeding associated with egg-laying. J. Comp. Physiol. 90, 225–243.

    Article  Google Scholar 

  • Davis, W.J., (1975) “Plasticity in the invertebrates,” In Neural Mechanisms of Learning and Memory. (Bennett, E.L. and Rosenzweig, M.R., eds.), MIT Press, Cambridge, Mass.,(In press).

    Google Scholar 

  • Dorsett, D.A., Willows, A.O.D. and Hoyle, G., (1973) Neuronal basis of behavior in Tritonia. IV. Central origin of a fixed action pattern. J. Neurobiol. 4, 287–300.

    Article  Google Scholar 

  • Evoy, W.H. and Kennedy, D., (1967) The central nervous organization underlying control of antagonistic muscles in the crayfish. I. Types of command fibres. J. Exp. Zool. 165, 223–238.

    Google Scholar 

  • Getting, P.A., (1975) Tritonia swimming: Triggering of a fixed action pattern. Brain Research. 96, 128–133.

    Google Scholar 

  • Gillette, R. and Davis, W.J., (1975) Control of feeding behavior by the metacerebral giant neuron of Pleurobranchaéa. Neuroscience Abstracts. 1, 571.

    Google Scholar 

  • Gillette, R. and Davis, W.J., (1976) The role of the metacerebral giant neuron in feeding behavior of Pleurobranchaea. (In preparation).

    Google Scholar 

  • Gorman, A.L.F. and Mirolli, M., (1969) The input-output organization of a pair of giant neurones in the mollusc Anisodoris nubilis (MacFarland). J. Exp. Biol. 51, 615–634.

    Google Scholar 

  • Grillner, S., (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol. Rev. 55, 247–304.

    Google Scholar 

  • Helmholtz, H. Von, (1925) Treatise of Physiological Optics. Vol 3, 3rd ed., ( Southall, P.C., ed. and trans.) Optical Society of America, Menasha, Wis.

    Google Scholar 

  • Hughes, G.M. and Wiersma, C.A.G., (1960) The co-ordination of swimmeret movements in the crayfish, Procambarus clarkii (Girard). J. Exp. Biol. 37, 657–670.

    Google Scholar 

  • Humphrey, D.K., Schmidt, E.M. and Thompson, W.D., (1970) Predicting measures of motor performance from multiple cortical spike trains. Science. 170, 758–762.

    Article  Google Scholar 

  • Ikeda, K. and Wiersma, C.A.G., 01964) Autogenic rhythmicity in the abdominal ganglia of the crayfish: The control of swimmeret movements. Comp. Biochem. Physiol. 12, 107–115.

    Google Scholar 

  • Junge, D. and Stevens, C.L., (1973) Cyclic variation of potassium conductance in a burst-generating neurone in Aplysia. J. Physiol. 235, 155–181.

    Google Scholar 

  • Kater, S.B., (1974) Feeding in Helisoma trivolvis: The morphological and physiological basis of a fixed action pattern. Amer. Zool. 14, 1017–1036.

    Google Scholar 

  • Kennedy, D., Evoy, W.J., and Hanawalt, J.T., (1966) Release of coordinated behavior in crayfish by single central neurons. Science. 143, 917–919.

    Article  Google Scholar 

  • Kennedy, D., Evoy, W.H., Dane, B. and Hanawalt, J.T., (1967) The central nervous organization underlying control of antagonistic muscles in the crayfish. II. Coding of position by command fibers. J. Exp. Zool. 165, 239–248.

    Article  Google Scholar 

  • Kennedy, D. and Davis, W.J., (1975) “The organization of invertebrate motor systems,” In Handbook of Physiology:.Neurophysiology, 2nd ed., American Physiological Society, New York, ( In press ).

    Google Scholar 

  • Koester, J., Mayeri, E., Liebeswar, G. and Kandel, E.R., (1974) Neural control of circulation in Aplysia. II. Interneurons J. Neurophysiol. 37, 476–496.

    Google Scholar 

  • Kovac, M., (1974) Abdominal movements during backward walking in crayfish. II. The neuronal basis. J. Comp. Physiol. 95, 79–94.

    Article  Google Scholar 

  • Kusano, K. and Grundfest, H., (1965) Circus reexcitation as a cause of repetitive activity in crayfish lateral giant axons. J. Cell Comp. Physiol. 65, 325–336.

    Article  Google Scholar 

  • Larimer, J.L., Eggleston, A.C., Masukawa, L.M. and Kennedy, D., (1971) The different connexions and motor outputs of lateral and medial giant fibres in the crayfish. J. Exp. Biol. 54, 391–402.

    Google Scholar 

  • Lashley, K.S., (1929) Brain Mechanisms in Intelligence. Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Livengood, D.R. and Kusano, K., (1972) Evidence for an electrogenic sodium pump in follower cells of the lobster cardiac ganglion. J. Neurophysiol. 35, 170–186.

    Google Scholar 

  • Maynard, D., (1972) Simpler networks. Ann. N.Y. Acad. Sci. 193, 59–72.

    Article  Google Scholar 

  • McMurtrie, R.E., (1975) Determinants of stability of large randomly connected systems. J. Theor. Biol. 50, 1–11.

    Article  Google Scholar 

  • Mendelson, M., (1971) Oscillator neurons in crustacean ganglia. Science. 171, 1170–1173.

    Article  Google Scholar 

  • Mulloney, B. and Selverston, A.I., (1974) Organization of the stomatogastric ganglion of the spiny lobster. I. Neurons driving the lateral teeth. J. Comp. Physiol. 91, 1–32.

    Google Scholar 

  • Parnas, I. and Strumwasser, F., (1974) Mechanisms of long-lasting inhibition of a bursting pacemaker neuron. J. Neurophysiol. 37, 609–620.

    Google Scholar 

  • Pearson, K.G. and Fourtner, C.R., (1975) Nonspiking interneurons in walking system of the cockroach. J. Neurophysiol. 38, 33–52.

    Google Scholar 

  • Perkel, D.H. and Mulloney, B., (1974) Motor pattern production in reciprocally inhibitory neurons exhibiting post-inhibitory rebound. Science. 185, 181–183.

    Article  Google Scholar 

  • Selverston, A.I., (1974) Structural and functional basis of motor pattern generation in the stomatogastric ganglion of the lobster. Amer. Zool. 14, 957–972.

    Google Scholar 

  • Sherrington, C., (1906) The Integrative Action of the Nervous System. Yale Univ. Press, New Haven, Conn.

    Google Scholar 

  • Siegler, M.V.S., Mpitsos, G.J. and Davis, W.J., (1974) Motor organization and generation of rhythmic feeding output in the buccal ganglion of Pleurobranchaea. J. Neurophysiol. 37, 1173–1196.

    Google Scholar 

  • Stark, L., (1968) Neurological Control Systems: Studies in Bioengineering. Plenum, New York.

    Google Scholar 

  • Stein, P.S.G., (1971) Intersegmental coordination of swimmeret motoneuron activity in crayfish. J. Neurophysiol. 34, 310–318.

    Google Scholar 

  • Strumwasser, F., (1968) “Membrane and intracellular mechanisms governing endogenous activity in neurons,” In Physiological and Biochemical Aspects of Nervous Integration. (Carlson, F.D., ed.), Prentice-Hall, Englewood Cliffs, N.J., (329–341).

    Google Scholar 

  • Tazaki, K., (1971) The effects of tetrodotoxin on the slow potential and spikes in the cardiac ganglion of a crab Eriocheir japonicus. Jap. J. Physiol. 21, 529–536.

    Google Scholar 

  • Tinbergen, N., (1950) The hierarchical organization of nervous mechanisms underlying instinctive behavior. Symp. Soc. Exp. Biol. 4, 305–312.

    Google Scholar 

  • Weiss, K.R., Cohen, J. and Kupfermann, I., (1975) Modulatory command function of the metacerebral cell on feeding behavior in Aplysia. Fed. Proc. 34, 418.

    Google Scholar 

  • Wiersma, C.A.G., (1938) Function of the giant fibers of the central nervous system of the crayfish. Proc. Soc. Exp. Biol. Med. 38, 661–662.

    Article  Google Scholar 

  • Wiersma, C.A.G. and Novitski, E., (1942) The mechanism of nervous regulation of the crayfish heart. J. Exp. Biol. 19, 255–265.

    Google Scholar 

  • Wiersma, C.A.G., (1952) Neurons of arthropods. Cold Spring Harb. Symp. Quant. Biol. 17, 155–163.

    Article  Google Scholar 

  • Wiersma, C.A.G. and Ikeda, K., (1964) Interneurons commanding swimmeret movements in the crayfish Procambarus clarkii (Girard). Comp. Biochem. Physiol. 12, 509–525.

    Article  Google Scholar 

  • Willows, A.O.D. and Hoyle, G., (1969) Neuronal network triggering a fixed action pattern. Science. 166, 1549–1551.

    Article  Google Scholar 

  • Willows, A.O.D., Dorsett, D.A. and Hoyle, G., (1973) The neuronal basis of behavior in Tritonia. III. Neuronal mechanisms of a fixed action pattern. J. Neurobiol. 4, 255–285.

    Article  Google Scholar 

  • Wilson, D.M., (1966) “Central nervous mechanisms for the generation of rhythmic behavior in arthropods,” In Nervous and Hormonal Mechanisms of Integration, Symp. Soc. Exp. Biol., vol. XX. Academic Press, New York, (199–228).

    Google Scholar 

  • Wine, J.J. and Krasne, F.B., (1972) The organization of escape behavior in the crayfish. J. Exp. Biol. 56, 1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, W.J. (1976). Organizational Concepts in the Central Motor Networks of Invertebrates. In: Herman, R.M., Grillner, S., Stein, P.S.G., Stuart, D.G. (eds) Neural Control of Locomotion. Advances in Behavioral Biology, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0964-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0964-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0966-7

  • Online ISBN: 978-1-4757-0964-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics