Skip to main content

Gram-Negative Mesophilic Sulfate-Reducing Bacteria

  • Chapter
The Prokaryotes

Abstract

An overview of the sulfate-reduction process is given in Chapter 24. Most types of dissimilatory sulfate-reducing bacteria that have been isolated from nature and described so far are mesophilic, nonsporeforming anaerobes. They are members of the delta subdivision of the proteobacteria. The earliest known representative of this category is Desulfovibrio (Beijerinck, 1895). Further investigations have revealed a great morphological and nutritional diversity within this group. Various cell types have been described including cocci; oval or long straight rods; more or less curved rods or spirilla; cell packets; cells with gas vesicles; and gliding, multicellular filaments (Figs. 7–9). Electron donors used for sulfate reduction include H2, alcohols, fatty acids, other monocarboxylic acids, dicarboxylic acids, some amino acids, a few sugars, phenyl-substituted acids, and some other aromatic compounds (Table 2). Even long-chain alkanes can be anaerobically oxidized by a particular type of sulfate-reducing bacterium (Aeckersberg et al., 1991). The utilization of polysaccharides or polypeptides, such as has been observed with the extremely thermophilic sulfate-reducing archaebacterium Archaeoglobus (Stetter, 1988; Stetter et al., 1987), has not been reported for mesophilic sulfate reducers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aeckersberg, E, E. Bak, and E. Widdel. 1991. Anaerobic oxidation of saturated hydrocarbons to CO, by a new type of sulfate-reducing bacterium. Arch. Microbiol. (in press).

    Google Scholar 

  • Badziong, W., R. K. Thauer, and J. G. Zeikus. 1978. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Microbiol. 116: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Badziong, W., B. Ditter, and R. K. Thauer. 1979. Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source. Arch. Microbiol. 123: 301–305.

    Article  CAS  Google Scholar 

  • Bak, F., and N. Pfennig. 1987. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch. Microbiol. 147: 184–189.

    Article  CAS  Google Scholar 

  • Bak, F., and N. Pfennig. 1991a. Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiol. Ecol. (in press).

    Google Scholar 

  • Bak, E, and N. Pfennig. 199lb. Sulfate-reducing bacteria in littoral sediment of Lake Constance. FEMS Microbiol. Ecol. (in press).

    Google Scholar 

  • Bak, F., and F. Widdel. 1986a. Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Arch. Microbiol. 146: 170–176.

    Article  CAS  Google Scholar 

  • Bak, E, and E. Widdel. 1986b. Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch. Microbiol. 146: 177–180.

    Article  CAS  Google Scholar 

  • Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beerens, H., and H. Romond. 1977. Sulfate-reducing anaerobic bacteria in human feces. Am. J. Clin. Nutr. 30: 1770–1776.

    PubMed  CAS  Google Scholar 

  • Beijerinck, W. M. 1895. Ueber Spirillum desulfuricans als Ursache von Sulfatreduction. Zentralbl. Bakteriol. 2. Abt. 1:1–9, 49–59, 104–114

    Google Scholar 

  • Boon, J. J., J. W. De Leeuw, G. J. v.d. Hoek, and J. H. Vos-jan. 1977. Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched ß-hydroxy acids in Desulfovibrio desulfuricans. J. Bacteriol. 129: 1183–1191.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brandis, A., and R. K. Thauer. 1981. Growth of Desulfovibrio species on hydrogen and sulfate as sole energy source. J. Gen. Microbiol. 126: 249–252.

    CAS  Google Scholar 

  • Bryant, M. P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25: 1324–1328.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with HZ utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33: 1162–1169.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brysch, K., C. Schneider, G. Fuchs, and E. Widdel. 1987. Lithoautotmphic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch. Microbiol. 148: 264–274.

    Article  CAS  Google Scholar 

  • Collins, M. D., and E. Widdel. 1986. Respiratory quinones of sulfate-reducing and sulfur-reducing bacteria: a systematic investigation. Syst. Appl. Microbiol. 8: 8–18.

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., W. Kleinitz, and E Widdel. 1986. Sulfatreduzierende Bakterien in einem Erdölfeld-Arten and Wachstumsbedingungen. Erdöl, Erdgas, Kohle, 102: 281–289.

    Google Scholar 

  • Cord-Ruwisch, R., W. Kleinitz, and E Widdel. 1987. Sulfate-reducing bacteria and their activities in oil production. J. Petrol. Technol., January 1987: 97–106.

    Google Scholar 

  • Cypionka, H., F. Widdel, and N. Pfennig. 1985. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Ecol. 31: 39–45.

    CAS  Google Scholar 

  • Dawson, R. M. C., D. C. Elliott, W. H. Elliott, and K. M. Jones. 1986. Data for biochemical research, p. 116. Clarendon Press, Oxford.

    Google Scholar 

  • Devereux, R., M. Delaney, F. Widdel, and D. A. Stahl. 1989. Natural relationships among sulfate-reducing eubacteria. J. Bacteriol. 171: 6689–6695.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Devereux, R., S.-H. He, C. L. Doyle, S. Orkland, D. S. Stahl, J. LeGall, and W. B. Whitman. 1990. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family J Bacteriol. 172: 3609–3619.

    CAS  Google Scholar 

  • DeWeerd, K. A., L. Mandelco, R. S. Tanner, C. R. Woese, and J. M. Suflita. 1990. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30.

    Google Scholar 

  • Dolfing, J., and J. M. Tiedje. 1987. Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch. Microbiol. 149: 102–105.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, N. J. E., E. Widdel, and D. C. White. 1986. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria. J. Gen. Microbiol. 132: 1815–1825.

    CAS  Google Scholar 

  • Esnault, G., P. Caumette, and J. L. Garcia. 1988. Characterization of Desulfovibrio giganteus sp. nov., a sulfate-reducing bacterium isolated from a brackish coastal lagoon. Syst. Appl. Microbiol. 10: 147–151.

    Article  Google Scholar 

  • Fiebig, K., and G. Gottschalk, 1983. Methanogenesis from choline by a coculture of Desulfovibrio sp. and Methanosarcina barkeri. Appl. Environ. Microbiol. 45: 161–168.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Folkerts, M., U. Ney, H. Kneifel, E. Stackebrandt, E. G. Witte, H. Förstel, S. M. Schoberth, and H. Sahm, 1989. Desulfovibrio furfuralis sp. nov., a furfural degrading strictly anaerobic bacterium. Syst. Appl. Microbiol. 11: 161–169.

    Google Scholar 

  • Fowler, V. J., E Widdel, N. Pfennig, C. R. Woese, and E. Stackebrandt, 1986. Phylogenetic relationships of sulfate-and sulfur-reducing eubacteria. Syst. Appl. Microbiol. 8: 32–41.

    Article  CAS  Google Scholar 

  • Gibson, G. R., R. J. Parkes, and R. A. Herbert. 1987. Evaluation of viable counting procedures for the enumeration of sulfate-reducing bacteria in estuarine sediments. J. Microbiol. Meth. 7: 201–210.

    Article  Google Scholar 

  • Gogotova, G. I., and M. B. Vainshtein 1989. Description of sulfate-reducing bacterium Desulfobacterium macestii sp. nov. capable of autotrophic growth. Mikrobiologiya (USSR) 57: 76–80.

    Google Scholar 

  • Greenwood, N. N., and A. Earnshaw. 1984. Chemistry of the elements, p. 852. Pergamon Press, Oxford.

    Google Scholar 

  • Hermann, M., K. M. Noll, and R. S. Wolfe, R. S. 1986. Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere. Appl. Environ. Microbiol. 51: 1124–1126.

    PubMed  CAS  PubMed Central  Google Scholar 

  • HHeunisch, G. W. 1976. Stoichiometry of reaction of sulfites with hydrogen sulfide. Inorg. Chem. 16: 1411–1413.

    Article  Google Scholar 

  • Hemann, A. E, E. Wiberg, and N. Wiberg. 1985. Lehrbuch der anorganischen Chemie, p. 518. Walter de Gruyter, Berlin.

    Google Scholar 

  • Howard, B. H., and R. E. Hungate. 1976. Desulfovibrio of the sheep rumen. Appl. Environ. Microbiol. 32: 598–602.

    Google Scholar 

  • Imhoff-Stuckle, D., and N. Pfennig. 1983. Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol. 136: 194–198.

    Article  CAS  Google Scholar 

  • Jacq, V. A., and Y. Dommergues. 1971. Sulfato-réduction spermatosphérique. Ann. Inst. Pasteur (Paris) 121: 199–206.

    CAS  Google Scholar 

  • Jones, H. E. 1971. Sulfate-reducing bacterium with unusual morphology and pigment content. J. Bacteriol. 106: 339–346.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jorgensen B. B. 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41: 7–17.

    Article  Google Scholar 

  • Jorgensen B. B., and E Bak. 1991. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. (in press).

    Google Scholar 

  • Laanbroek, H. J., T. Abee, and I. L. Voogd. 1982. Alcohol conversion by Desulfobulus propionicus strain Lind-horst in the presence and absence of sulfate and hydrogen. Arch. Microbiol. 133: 178–184.

    Article  CAS  Google Scholar 

  • Lapage, S. P., J. E. Shelton, and T. G. Mitchell. 1971. Media for the maintenance and preservation of bacteria, p. 1133. In: J. R. Norris, and D. W. Ribbons (ed.), Methods in microbiology, vol. 3A. Academic Press, London.

    Google Scholar 

  • Lee, J.-P., C.-S. Yi, J. LeGall, and H. D. Peck, Jr. 1973. Isolation of a new pigment, desulforubidin, from Desulfovibirio desulfuricans. J. Bacteriol. 115: 453–455.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loach, P. A. 1970. Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies, p. J33–J40. In: H. A. Sober (ed.) Handbook of biochemistry, 2nd ed. The Chemical Rubber Co., Cleveland.

    Google Scholar 

  • Moore, W. E. C., J. L. Johnson, and L. V. Holdeman. 1976. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int. J. Syst. Bacteriol. 26: 238–252.

    Article  Google Scholar 

  • Nanninga, H. J., and J. C. Gottschal. 1987. Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl. Environ. Microbiol. 53: 802–809.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nazina, T. N., A. B. Poltaraus, and E. P. Rozanova. 1987. Estimation of genetic relationship between rod-shaped asporogenic sulfate-reducing bacteria. Mikrobiologiya (USSR) 56: 845–848.

    Google Scholar 

  • Odom, J. M., and H. D. Peck, Jr. 1984. Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Annu. Rev. Microbiol. 38: 551–592.

    Article  PubMed  CAS  Google Scholar 

  • Ollivier, B., R. Cord-Ruwisch, E. C. Hatchikian, and J. L. Garcia 1988. Characterization of Desulfovibrio fructosovorans sp. nov. Arch. Microbiol. 149: 447–450.

    Article  CAS  Google Scholar 

  • Pace, B., and L. L. Campbell. 1971. Homology of ribosomal ribonucleic acid of Desulfovibrio species with Desulfovibrio vulgaris. J. Bacteriol. 106: 717–719.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pankhania, I. P., A. M. Spormann, and R. K. Thauer. 1988. Lactate conversion to acetate, CO, and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction. Arch. Microbiol. 150: 26–31.

    Article  CAS  Google Scholar 

  • Pfennig, N., and H. G. Trüper. 1981. Isolation of members of the families Chromatiaceae and Chlorobiaceae, p. 279–289. In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes, vol. I. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Pfennig, N., E Widdel, and H. G. Trüper. 1981. The dissimilatory sulfate-reducing bacteria, p. 926–940. In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes, vol. I. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Platen, H., A. Temmes, and B. Schink. 1990. Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov. Arch. Microbiol. 154: 355–361.

    PubMed  CAS  Google Scholar 

  • Postgate, J. R. 1984a. The sulfate-reducing bacteria. Cambridge University Press, Cambridge, London.

    Google Scholar 

  • Postgate, J. R. 1984b. Genus Desulfovibrio, p. 666–672. In: N. R. Krieg, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Rozanova, E. R, T. N. Nazina, and A. S. Galushko. 1988. A new genus of sulfate-reducing bacteria and the description of its new species, Desulfomicrobium apsheronum gen. nov., sp. nov. Mikrobiologiya (USSR) 57: 634–641.

    CAS  Google Scholar 

  • Rozanova, E. P., and T. A. Pivovarova. 1988. Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974). Mikrobiologiya (USSR) 57: 102–106.

    Google Scholar 

  • Samain, E., H. C. Dubourguier, and G. Albanac. 1984. Isolation and characterization of Desulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst. Appl. Microbiol. 5: 391–401.

    Article  CAS  Google Scholar 

  • Schink, B. 1984. Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus, sp. nov. and evidence for propionate formation from CZ compounds. Arch. Microbiol. 137: 33–41.

    Article  CAS  Google Scholar 

  • Schink, B., D. R. Kremer, and T. A. Hansen, 1987. Pathway of propionate formation from ethanol in Pelobacter propionicus. Arch. Microbiol. 147: 321–327.

    Article  CAS  Google Scholar 

  • Schnell, S., E Bak, and N. Pfennig. 1989. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Arch. Microbiol. 152: 556–563.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, D. R., and J. M. Tiedje. 1984. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48: 840–848.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Soimajärvi, J., M. Pursiainen, and J. Korhonen. 1978. Sulfate-reducing bacteria in paper machine waters and in suction roll perforations. Eur. J. Appl. Microbiol. Biotechnol. 5: 87–93.

    Article  Google Scholar 

  • Stackebrandt, E., U. Wehmeyer, and B. Schink. 1989. The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst. Appl. Microbiol. 11: 257–260.

    Article  CAS  Google Scholar 

  • Stams, A. J. M., D. R. Kremer, K. Nicolay, G. H. Weenk, and T. A. Hansen 1984. Pathway of propionate formation in Desulfobulbus propionicus. Arch. Microbiol. 139: 167–173.

    Article  CAS  Google Scholar 

  • Stetter, K. O. 1988. Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10: 171–173.

    Google Scholar 

  • Stetter, K. O., G. Lauerer, M. Thomm, and A. Neuner. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236: 822–824.

    Article  PubMed  CAS  Google Scholar 

  • Szewzyk, R., and N. Pfennig. 1987. Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch. Microbiol. 147: 163–168.

    Article  CAS  Google Scholar 

  • Takai, Y., and T. Kamura. 1966. The mechanism of reduction in waterlogged paddy soil. Folia Microbiol. 11: 304–313.

    Article  CAS  Google Scholar 

  • Tanner, R. S. 1989. Monitoring sulfate-reducing bacteria: comparison of enumeration media. J. Microbiol. Meth. 10: 83–90.

    Article  Google Scholar 

  • Taylor, J., and R. J. Parkes. 1983. The cellular fatty acids of the sulfate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol. 129: 3303–3309.

    CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ueki, A., and T. Suto. 1979. Cellular fatty acid composition of sulfate-reducing bacteria. J. Gen. Appl. Microbiol. 25: 185–196.

    Article  CAS  Google Scholar 

  • Veldkamp, H. 1970. Enrichment cultures of prokaryotic organisms, p. 305–361. In: J. R. Norris, and D. W. Ribbons (ed.), Methods in microbiology, vol. 3A. Academic Press, London.

    Google Scholar 

  • Watanabe, I., and C. Furusaka. 1980. Microbial ecology of flooded rice soils. Adv. Microbiol. Ecol. 4: 125–168.

    Article  CAS  Google Scholar 

  • Weast, R. C. 1989. Handbook of chemistry and physics, 70th ed. (p. D-154). CRC Press, Boca Rota, FL.

    Google Scholar 

  • Widdel, E 1980. Anaerober Abbau von Fettsäuren and Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral Thesis. University of Göttingen, Göttingen, Germany

    Google Scholar 

  • Widdel, E. 1983. Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria. Arch. Microbiol. 134: 282–285.

    Article  Google Scholar 

  • Widdel, E. 1987. New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov., Arch. Microbiol. 148: 286–291.

    CAS  Google Scholar 

  • Widdel, E 1988. Microbiology and ecology of sulfate-and sulfur-reducing bacteria, p. 469–585. In: A. J. B. Zehn-der (ed.), Biology of anaerobic microorganisms. John Wiley and Sons, New York.

    Google Scholar 

  • Widdel, E. 1989. Genus Desulfonema, p. 2128–2131. In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Williams and Wilkins, Baltimore

    Google Scholar 

  • Widdel, E, G.-W. Kohring, and E. Mayer, 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134: 286–294

    Article  CAS  Google Scholar 

  • Widdel, E, and N. Pfennig, 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Widdel, E, and N. Pfennig, 1982. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch. Microbiol. 131: 360–365.

    Article  CAS  Google Scholar 

  • Widdel, E, and N. Pfennig, 1984. Dissimilatory sulfate-or sulfur-reducing bacteria, p. 663–679. In: N. R. Krieg, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zeikus, J. G., M. A. Dawson, T. E. Thompson, K. Ingvorsen, and E. C. Hatchikian, 1983. Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesufobacterium commune gen. nov. and sp. nov. J. Gen. Microbiol. 129: 1159–1169.

    CAS  Google Scholar 

  • Zellner, G., P. Messner, H. Kneifel, and J. Winter, 1989. Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester. Arch. Microbiol. 152: 329–334.

    Google Scholar 

  • Zellner, G., P. Vogel, H. Kneifel, and J. Winter, 1987. Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia. Appl. Microbiol. Biotechnol. 27: 306–314.

    Google Scholar 

  • Zellner, G., and J. Winter, 1987. Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst. Appl. Microbiol. 9: 284–292.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Widdel, F., Bak, F. (1992). Gram-Negative Mesophilic Sulfate-Reducing Bacteria. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics