Skip to main content

Performance Analysis of Asynchronous Circuits and Systems Using Stochastic Timed Petri Nets

  • Chapter
Hardware Design and Petri Nets

Abstract

This chapter describes and extends a recently developed approach for analyzing the performance of asynchronous circuits using stochastic timed Petri nets (STPNs) with unique- and free-choice and general delay distributions. The approach uses finite net executions to derive closed-form expressions for both upper and lower bounds of the performance metrics. The expressions can be efficiently evaluated using standard statistical methods. The mean of the upper and lower bounds provides an performance estimate which has a well-defined error interval. The error interval can often be made arbitrarily small by analyzing longer net executions at the cost of additional run-time. Experiments of several asynchronous circuits demonstrate the efficiency of the approach as well as the high quality of the estimates. The experiments include a fullscale STPN model of Intel’s asynchronous instruction length decoding and steering unit with over 900 transitions and 500 places.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126: 183–235.

    Article  MathSciNet  MATH  Google Scholar 

  2. Best, E. (1990). Partial order behavior and structure of Petri nets. Formal Aspects of Computing, 2: 123–138.

    Article  MATH  Google Scholar 

  3. Best, E. and Voss, K. (1984). Free choice systems have home states. Acta Informatica, 21: 89–100.

    Article  MathSciNet  Google Scholar 

  4. Buchholz, P. (1994). Exact and ordinary lumpability in finite Markov chains. Journal of Applied Probability, 31: 59–75.

    Article  MathSciNet  MATH  Google Scholar 

  5. Burns, S. M. (1991). Performance Analysis and Optimization of Asynchronous Circuits. PhD thesis, California Institute of Technology.

    Google Scholar 

  6. Campos, J., Chiola, G., and Silva, M. (1991). Properties and performance bounds for closed free choice synchronized monoclass queueing networks. IEEE Transactions on Automatic Control, 36 (12): 1368–1382.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chakraborty, S. and Dill, D. L. (1997). Approximate algorithms for time separation of events. In Proc. International Conf. Computer-Aided Design (ICCAD), pages 190–194.

    Google Scholar 

  8. Chaney, T. J. and Molnar, C. E. (1973). Anomalous behavior of synchronizer and arbiter circuits. IEEE Transactions on Computers, C-22 (4):421–422.

    Google Scholar 

  9. Chou, W.-C., Beerel, P. A., Ginsoar, R., Kol, R., Myers, C. J., Rotem, S., Stevens, K., and Yun, K. Y. (1998). Average-case optimized technology mapping of one-hot domino circuits. In Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC),pages 80–91. IEEE Computer Society Press.

    Google Scholar 

  10. Ebergen, J. and Berks, R. (1999). Reponse-time of asynchronous linear pipelines. Proceedings of the IEEE, 87 (02): 308–318.

    Article  Google Scholar 

  11. Glynn, P. W. and Iglehart, D. L. (1990). Simulation output analysis using standardized time series. Math. Oper. Res., 3: 1–16.

    Article  MathSciNet  Google Scholar 

  12. Greenstreet, M. R. and Steiglitz, K. (1990). Bubbles can make self-timed pipelines fast. Journal of VLSI Signal Processing, 2(3):139–148.

    Google Scholar 

  13. Grimmett, G. R. and Stirzaker, D. R. (1992). Probability and Random Processes (2nd Edition). Oxford Science Publications.

    Google Scholar 

  14. Haas, P. J. (1997). Estimation methods for stochastic Petri nets based on standardized time series. In International Workshops on Petri Nets and Performance Modelds, pages 194–204.

    Google Scholar 

  15. Holliday, M. A. and Vernon, M. Y. (1987). A generalized timed Petri net model for performance analysis. IEEE Transactions on Software Engineering, 13 (12): 1297–1310.

    Article  Google Scholar 

  16. Hulgaard, H. and Burns, S. M. (1994). Bounded delay timing analysis of a class of CSP programs with choice. In Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC), pages 2–11. IEEE Computer Society Press.

    Google Scholar 

  17. Kudva, P., Gopalakrishnan, G., Brunvand, E., and Akella, V. (1994). Performance analysis and optimization of asynchronous circuits. In Proc. International Conf. Computer Design (ICCD), pages 221–225.

    Google Scholar 

  18. Lee, T. (1995). A General Approach to Performance Analysis and Optimization of Asynchronous Circuits. PhD thesis, California Institute of Technology.

    Google Scholar 

  19. Marsan, M. A., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G. (1995). Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons.

    Google Scholar 

  20. Marsan, M. A., Bobbio, A., and Donatelli, S. (1998). Petri nets in performance analaysis: An introduction. In Lectures on Petri nets I: Basic Models, Lecture Notes in Computer Science. Springer-Verlag.

    Google Scholar 

  21. Martin, A. J., Burns, S. M., Lee, T. K., Borkovic, D., and Hazewindus, P. J. (1989). The design of an asynchronous microprocessor. In Seitz, C. L., editor, Advanced Research in VLSI: Proceedings of the Decennial Caltech Conference on VLSI, pages 351–373. MIT Press.

    Google Scholar 

  22. Miller, I. R., Freund, J. E., and Johnson, R. (1990). Probability and Statistics for Engineers. Prentice Hall.

    Google Scholar 

  23. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77: 541–580.

    Article  Google Scholar 

  24. Ramamoorthy, C. V. and Ho, G. S. (1980). Performance evaluation of asynchronous concurrent systems using Petri nets. IEEE Transactions on Software Engineering, 6 (5): 440–449.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rotem, S., Stevens, K., Agapiev, B., Dike, C., Roncken, M., Ginosor, R., Kol, R., Beerel, P. A., Yun, K. Y., and Myers, C. J. (1999). Rappid: An asynchronous instruction length decoding and steering unit. In Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC).

    Google Scholar 

  26. Shedler, G. S. (1993). Regenerative Stochastic Simulation. Academic Press, New York.

    MATH  Google Scholar 

  27. Sutherland, I. E. (1989). Micropipelines. Communications of the ACM, 32 (6): 720–738.

    Article  Google Scholar 

  28. Xie, A. and Beerel, P. A. (1997). Symbolic techniques for performance analysis of asynchronous systems based on average time separation of events. In Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC),pages 64–75. IEEE Computer Society Press.

    Google Scholar 

  29. Xie, A. and Beerel, P. A. (1998). Efficient state classification of finite state Markov chains. IEEE Transactions on Computer-Aided Design, 17 (12): 1334–1338.

    Article  Google Scholar 

  30. Xie, A. and Beerel, P. A. (1999). Accelerating Markovian analysis of asynchronous systems using state compression. IEEE Transactions on Computer-Aided Design, 18 (7): 869–888.

    Article  Google Scholar 

  31. Xie, A., Kim, S., and Beerel, P. A. (1999). Bounding average time separation of events in stochastic timed Petri nets with choice. In Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC).

    Google Scholar 

  32. Yakovlev, A. and Koelmans, A. M. (1998). Petri nets and digital hardward design. In Lectures on Petri nets II: Basic Models,Lecture Notes in Computer Science. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xie, A., Beerel, P.A. (2000). Performance Analysis of Asynchronous Circuits and Systems Using Stochastic Timed Petri Nets. In: Yakovlev, A., Gomes, L., Lavagno, L. (eds) Hardware Design and Petri Nets. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3143-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3143-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4969-1

  • Online ISBN: 978-1-4757-3143-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics