Skip to main content
  • 215 Accesses

Abstract

Molecular techniques will have an enormous impact on plant breeding. Marker-assisted selection and marker-based genetic distance analysis are presently used for many breeding programs. They help to accelerate backcrossing procedures and to predict the performance of progeny. Furthermore, genetic engineering tools offer interesting alternatives for crop production. In particular, they can facilitate the development of plants with better pest and disease resistance and improved quality characteristics. Such transgenic plants have undergone extensive safety studies and were commercially grown on 40 million hectares worldwide in 1999. Nevertheless, breeding in the laboratory alone will never be a realistic alternative, and so future plant breeding will continue to rely on traditional procedures of selection and field-testing. Locally adapted varieties will be fundamental whether transgenic technologies are employed or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apse, M.P., G.S. Aharan, W.A. Snedden, and E. Blumwald (1999): Salt Tolerance Conferred by Overexpression of a Vacuolar Na +/H+ Antiport in Arabidopsis. Science 285, pp. 1256–1258.

    Article  Google Scholar 

  • Ayub, R., M. Guis, M. Benamor, L. Gillot, J.P. Roustan, A. Latche, M. Bouzayen, and J.C. Pech (1996): Expression of ACC Oxidase Antisense Gene Inhibits Ripening of Cantaloupe Melon Fruits. Nature Biotechnology 14, pp. 862–866.

    Article  Google Scholar 

  • Becker, D., R. Brettschneider, and H. Lörz (1994): Fertile Transgenic Wheat from Microprojectile Bombardment of Scutellar Tissue. Plant Journal 5, pp. 299–307.

    Article  Google Scholar 

  • DellaPenna, D. (1999): Nutritional Genomics: Manipulating Plant Micronutrients to Improve Human Health. Science 285, pp. 375–379.

    Article  Google Scholar 

  • Falco, S.C., T. Guida, M. Locke, J. Mauvais, C. Sanders, R.T. Ward, and P. Webber (1995): Transgenic Canola and Soybean Seeds with Increased Lysine. Biotechnology 13, pp. 577–582.

    Article  Google Scholar 

  • Gura, T. (1999): New Genes Boost Rice Nutrient. Science 285, pp. 994–995.

    Article  Google Scholar 

  • Jaglo-Ottosen, K.R., S.J. Gilmour, D.K. Zarka, O. Schabenberger, and M.F. Tomashow (1998): Arabidopsis CBF1 Overexpression Induces COR Genes and Enhances Freezing Tolerance. Science 280, pp. 104–106.

    Article  Google Scholar 

  • Lee, M. (1995): DNA Markers and Plant Breeding Programs. Advances in Agronomy 55, pp. 265–344.

    Article  Google Scholar 

  • Mariani, C., V. Gossele, M. De Beuckeleer, M. De Block, R.B. Goldberg, W. De Greef, and J. Leemans (1992): A Chimaeric Ribonuclease-Inhibitor Gene Restores Fertility to Male Sterile Plants. Nature 357, pp. 384–387.

    Article  Google Scholar 

  • Paterson, A.H., S. Tanksley, and M. Sorrells (1991): DNA Markers in Plant Improvement. Advances in Agronomy 46, pp. 39–90.

    Article  Google Scholar 

  • Rossi, M., F.L. Goggin, S.B. Milligan, I. Kaloshian, D.E. Ullman, and V.M. Williamson (1998): The Nematode Resistance Gene Mvii of Tomato Confers Resistance Against the Potato Aphid. Proceedings of the National Academy of Science USA 95, pp. 9750–9754.

    Article  Google Scholar 

  • Somerville, C., and S.C. Somerville (1999): Plant Functional Genomics. Science 285, pp. 380–383.

    Article  Google Scholar 

  • Tanksley, S.D., and J.C. Nelson (1996): Advanced Backcross QTL Analysis: A Method for the Simultaneous Discovery and Transfer of Valuable QTLs from Unadapted Germplasm into Elite Breeding Lines. Theoretical and Applied Genetics 92, pp. 191–203.

    Article  Google Scholar 

  • Tu, J., I. Ona, T.W. Mew, O.S. Fluh, and S.R. Datta (1999): Transgenic Rice Variety IR72 with Xa21 is Resistant to Bacterial Blight. Theoretical and Applied Genetics 97, pp. 31–36.

    Article  Google Scholar 

  • Vasil, V., V. Srivastava, A.M. Castillo, M.E. Fromm, and I.K. Vasil (1993): Rapid Production of Transgenic Wheat Plants by Direct Bombardment of Cultured Immature Embryos. Biotechnology 11, pp. 1553–1558.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jung, C. (2000). Molecular Tools for Plant Breeding. In: Qaim, M., Krattiger, A.F., von Braun, J. (eds) Agricultural Biotechnology in Developing Countries. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3178-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3178-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4864-9

  • Online ISBN: 978-1-4757-3178-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics