Skip to main content

Electronic Structure of Metal Hydrides

  • Chapter
Metal Hydrides

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 76))

Abstract

Theoretical studies of the electronic structure of metal hydrides will be discussed from the point of view of ordinary band theory and from the view of disordered materials theories such as the coherent potential approximation. The presentation will cover an introduction to the methodology followed in such calculations and analysis of the results obtained. A comparison will be made between the band structure of the host metal and that of the corresponding hydride. Trends as a function of changing the element of the metal site, and as a function of hydrogen content will be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Switendick, Electronic Band Structures of Metal Hydrides, Solid State Commun. 8, 1463 (1970); Metal Hydrides-Structure and Band Structure, Int. J. Quantum Chem. 5, 459 (1971).

    Google Scholar 

  2. A.C. Switendick, Electronic Energy Bands of Metal Hydrides- Palladium and Nickel Hydride, Ber. Bunsenges, Physik. Chemie 76, 535 (1972).

    CAS  Google Scholar 

  3. D.E. Eastman, J.K. Cashion, and A.C. Switendick, Photoemission Studies of Energy Levels in the Palladium-Hydrogen System, Phys. Rev. Lett. 27, 35 (1971).

    Article  CAS  Google Scholar 

  4. A.C. Switendick, “Hydrogen in Metals–A New Theoretical Model”, in Hydrogen Energy, Part B, ed. T.N. Veziroglou ( Plenum Press, NY, 1975 ) pp 1029–1042.

    Google Scholar 

  5. A.C. Switendick, Influence of the Electronic Structure on the Titanium Vanadium-Hydrogen Phase Diagram, J. Less-Common Metals 49, 283 (1976).

    Article  CAS  Google Scholar 

  6. A.C. Switendick, “The Change in Electronic Properties on Hydrogen Alloying and Hydride Formation”, in Topics in Applied Physics, Vol. 28: Hydrogen in Metals I: Basic Properties, G. Alefeld and J. V81kl eds. ( Springer Verlag, Berlin 1978 ) pp 101–129.

    Google Scholar 

  7. A.C. Switendick, Bandstructure Calculations for Metal Hydrogen Systems, Zeitschrift Physik. Chemie, Vol. 117, pp 89–112 (1979).

    CAS  Google Scholar 

  8. D.A. Papaconstantopoulos and B.M. Klein, Superconductivity in the Palladium-Hydrogen System, Phys. Rev. Lett. 35, 110 (1975); B.M. Klein and D.A. Papaconstantopoulos, Calculation of the Electron-Phonon Interaction and Superconductivity in the Palladium-Hydrogen System, in Proceedings of 14th Intern. Conf. on Low Temperature Physics, eds. M. Krusius and M. Vuorio (North Holland, Amsterdam, 1975) Vol. 2, pp 399–402.

    Google Scholar 

  9. B.M. Klein, D.A. Papaconstantopoulos, and L.L. Boyer, Calculations of the Superconducting Properties of Compounds: Refractory Carbides, PdH and V3Si, in Proceedings of the 2nd Rochester-Conf. on Superconductivity in d-and f-Band Metals ed. D.H. Douglass (Plenum Press, NY, 1976 ) pp 339–359.

    Chapter  Google Scholar 

  10. B.M. Klein, E.N. Economou, and D.A. Papaconstantopoulos, On the Inverse Isotope Effect and the x-Depencence of the Superconducting Transition Temperature in PdHx and PdDx, Phys. Rev. Lett. 39, 574 (1977).

    Article  CAS  Google Scholar 

  11. D.A. Papaconstantopoulos, B.M. Klein, E.N. Economou, and L.L. Boyer, Band Structure and Superconductivity of PdDx and PdHx, Phys. Rev. B17, 141 (1978).

    Article  CAS  Google Scholar 

  12. D.A. Papaconstantopoulos, B.M. Klein, J.S. Faulkner, and L.L. Boyer, Coherent-Potential-Approximation Calculations for PdHx, Phys. Rev. B18, 2784 (1978).

    Article  CAS  Google Scholar 

  13. D.A. Papaconstantopoulos, E.N. Economou, B.M. Klein, and L.L. Boyer, Superconductivity in Palladium-Based Hydrides, J. Physique 6, C 435 (1978).

    Google Scholar 

  14. D.A. Papaconstantopoulos, E.N. Economou, B.M. ‘Klein, and L.L. Boyer, Electronic Structure and Superconductivity in Pd-Ag-H and Pd-Rh-H Alloys, Phys. Rev. B20, 177 (1979).

    Article  CAS  Google Scholar 

  15. D.A. Papaconstantopoulos, Platinum Hydride: A Possible High Temperature Superconductor, J. Less-Common Metals 73, 305 (1980).

    Article  CAS  Google Scholar 

  16. J.C. Slater, Wave Functions in a Periodic Potential, Phys. Rev. 51, 846 (1937).

    Article  CAS  Google Scholar 

  17. L.F. Mattheiss, J.H. Wood, and A.C. Switendick, A Procedure for Calculating Electronic Energy Bands Using Symmetrized Augmented Plane Waves, in Methods in Computational Physics, Vol. 8, pp 63–147 (1968).

    Google Scholar 

  18. T. Loucks, “Augmented Plane Wave Method”, Benjamin, NY (1967).

    Google Scholar 

  19. J.0. Dimmock, The Calculation of Electronic Energy Bands by the APW Method, Solid State Phys. 26, 103 (1971).

    Article  Google Scholar 

  20. L.F. Mattheiss, Band Structure and Fermi Surface for Rhenium, Phys. Rev. 151, 450 (1966).

    Article  CAS  Google Scholar 

  21. D.D. Koelling and B.N. Harmon, A Technique for Relativistic Spin-Polarized Calculations, J. Phys. C10, 3107 (1977).

    CAS  Google Scholar 

  22. D.A. Liberman, D.T. Cromer and J.T. Waber, Relativistic Self-Consistent Field Program for Atoms and Ions, Comput. Phys. Commun. 2, 107 (1971).

    Article  CAS  Google Scholar 

  23. P.O. LBwdin, Quantum Theory of Cohesive Properties of Solids, Advan. Phys. 5, 1 (1956).

    Google Scholar 

  24. In what has come to be known as the Mattheiss prescription (L.F. Mattheiss, Phys. Rev. 133, A1399 (1964)) a different procedure is followed. The difference is the fact that Eq. (6) is also used in order to calculate V (r) as a super-position of atomic potentials V (r) insctead of solving Poisson’s equation.

    Google Scholar 

  25. S. Asano and J. Yamashita, On the Self-Consistent Potential of the Band Calculation, J. Phys. Soc. Japan, 30, 667 (1971); for a computer code see D.A. Papaconstantopoulos and W.R. Slaughter, Calculation of Crystal Potentials, Comput. Phys. Commun. 7, 207 (1974); 13, 225 (1977).

    Google Scholar 

  26. The MT sphere radius is usually taken equal to half the nearest neighbor distance for monatomic materials. For compounds we have chosen the radii by imposing the condition that the starting crystal potentials are equal at the point of contact of the MT spheres.

    Google Scholar 

  27. J.C. Slater, Statistical Exchange-Correlation in the Self-Consistent Field, in Advances in Quantum Chemistry, Vol. 6, pp 1–92, Academic Press (NY) 1972.

    Google Scholar 

  28. K. Schwarz, Optimization of the Statistical Exchange Parameter a for the Free Atoms H to Nb, Phys. Rev. B5, 2466 (1972); Optimized Statistical Exchange Parameter a for Atoms with Higher Z, Theor. Chim. Acta 34, 225 (1974).

    CAS  Google Scholar 

  29. L. Hedin and B.I. Lundqvist, Explicit Local Exchange-Correlation Potentials, J. Phys. C4, 2064 (1971).

    Google Scholar 

  30. In our calculations we have used the expression: a (r) = F o old(r)+(1-F)Qnew(r) where F = 0.75.

    Google Scholar 

  31. F.M. Mueller, J.W. Garland, M.H. Cohen, and K.H. Bennemann, Quadratic Integration: Theory and Application to the Electronic Structure of Platinum, Ann. Phys. (NY) 67, 19 (1971).

    Article  CAS  Google Scholar 

  32. G. Lehmann and M. Taut, On the Numerical Calculation of the Density of States and Related Properties, Phys. Status Solidi (b)54, 469 (1972); O. Jepsen, and O.K. Anderson, The Electronic Structure of hcp Ytterbium, Solid State Commun. 9, 1763 (1971).

    Google Scholar 

  33. J.C. Slater and G.F. Koster, Simplified LCAO Method for the Periodic Potential Problem, Phys.Rev. 94, 1498 (1954).

    Article  CAS  Google Scholar 

  34. L.L. Boyer, Symmetrized Fourier Method for Interpolating Band Structure Results, Phys. Rev. B19,_2824 (1979).

    Google Scholar 

  35. B.M. Klein, L.L.Boyer, D.A. Papaconstantopoulos, and L.F. Mattheiss, Self-Consistent Augmented-Plane-Wave Electronic-Structure Calculations for the A15 Compounds V X and Nb X, X = Al, Ga, Si, Ge, and Sn, Phys. Rev. B18, 6411 (1978).

    Article  CAS  Google Scholar 

  36. P. Soven, Coherent-Potential Model of Substitutional Disordered Alloys, Phys. Rev. 156, 809 (1967).

    Article  CAS  Google Scholar 

  37. J.S. Faulkner, Electronic States of Substoichiometric Compounds and Application to Palladium Hydride, Phys. Rev. B13, 2391 (1976).

    Article  CAS  Google Scholar 

  38. J. Zbasnik, and M. Mahnig, The Electronic Structure of Beta-Phase Palladium Hydride, Z. Phys. B23, 15 (1976).

    CAS  Google Scholar 

  39. M. Gupta and A.J. Freeman, Electronic Structure and Proton Spin-Lattice Relaxation in PdH, Phys. Rev. B17, 3029 (1978).

    Article  CAS  Google Scholar 

  40. M. Gupta and J.P. Burger, Experimental and Theoretical Investigation of the Coupling of Electrons with Acoustical and Optical Phonons in Metal Hydrides Relationships with Superconductivity, this volume.

    Google Scholar 

  41. C.D. Gelatt, Jr., H. Ehrenreich, and J. Weiss, Transition Metal Hydrides: Electronic Structure and the Heats of Formation, Phys. Rev. B17, 1940 (1978).

    CAS  Google Scholar 

  42. A.R. Williams, J. Kubier, and C.D. Gelatt, Jr., Cohesive Prôperties of Metallic Compounds: Augmented-Spherical-Wave Calculations, Phys. Rev. B19, 6094 (1979).

    Article  CAS  Google Scholar 

  43. N.I. Kulikov, Band Structure and Electronic Properties of Transition Metal Hydrides, Phys. Status Solidi (b)91, 753 (1979).

    Google Scholar 

  44. G.M. Stocks, R.W. Williams, and J.S. Faulkner, Electronic States in Ag-Pd Alloys, J. Phys. F3, 168 (1973); A.J. Pindor, W.M. Temmerman, B.L. Gyorffy, and G.M. Stocks, On the Electronic Structure of AgcPd1-c Alloys, J. Phys. F (1980) to be published.

    Google Scholar 

  45. D.J. Peterman, B.N. Harmon, J. Marchiando, and J.H. Weaver, Electronic Structure of Metal Hydrides II: Band Theory of ScH2 and YH2, Phys. Rev. B19, 4867 (1979).

    Article  CAS  Google Scholar 

  46. E.N. Economou, Superconductivity in Palladium-Based Hydrides, this volume.

    Google Scholar 

  47. D.S. MacLachlan, R. Mailfert, B. Souffaché, and J.P. Burger, Electrical Resistivity and Superconductivity in PdH, in Proc. of 14th Intern. Conf. on Low Temperature Physics, eds. M. Krusius and M. Vuorio (North Holland, Krusius and M. 1975 ) Vol. 2 pp 40–43.

    Google Scholar 

  48. C.A. Mackliet, D.J. Gillespie, and A.I. Schindler, Specific Heat, Electrical Resistance, and Other Properties of Superconducting Pd-H Alloys, J. Phys. Chem. Solids 37, 379 (1976).

    Article  CAS  Google Scholar 

  49. W.J. Venema, R. Griessen, R.S. Sorbello, N.L.M. Bakker, and P.E.M. Mijnarends, Effect of Zero-Point-Motion on the Electronic Structure of Pd-H(D), Proc. of Physics of Transition Metals Conf., Leeds (1980).

    Google Scholar 

  50. A. Bansil, R. Prasad, S. Bessendorf, L. Schwartz, W.J. Venema, R. Feenstra, F. Blom, and R. Griessen, Electronic States and Fermi Surface Properties of a-Phase PdHx, Solid State Commun. 32, 1115 (1979).

    Article  CAS  Google Scholar 

  51. B.M. Klein and D.A. Papaconstantopoulos, On Calculating the Electron-Phonon Mass Enhancement A for Compounds, J. Phys. F6, 1135 (1976).

    Article  CAS  Google Scholar 

  52. This formula (Eq. 23) is approximate because of the ommission of the cross term but it is particularly accurate when the mass difference MMet-MH is large as in the present case.

    Google Scholar 

  53. W.L. McMillan, Transition Temperature of Strong-Coupled Superconductors, Phys. Rev. 167, 331 (1968).

    Article  CAS  Google Scholar 

  54. J.M. Rowe, J.J. Rush, H.G. Smith, M. Mostoller, and H.E. Flotow, Lattice Dynamics of a Single Crystal of PhD0.63, Phys. Rev. Lett. 33, 1297 (1974).

    Article  CAS  Google Scholar 

  55. G.D. Gaspari and B.F. Gyorffy, Electron-Phonon Interaction d-Resonances and Superconductivity in Transition Metals, Phys. Rev. Lett. 28, 801 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papaconstantopoulos, D.A. (1981). Electronic Structure of Metal Hydrides. In: Bambakidis, G. (eds) Metal Hydrides. NATO Advanced Study Institutes Series, vol 76. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5814-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5814-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5816-0

  • Online ISBN: 978-1-4757-5814-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics