Skip to main content

Part of the book series: Lasers, Photonics, and Electro-Optics ((LPEO))

Abstract

The rationale for the use of a new modality such as laser-induced hyperthermia in the treatment of human neoplasm is based on a broad spectrum of research. The general research on hyperthermia has been conducted over a centennial, whereas the work on laser-induced hyperthermia has been carried out over the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hahn GM. Hyperthermia and Cancer, Plenum Press, New York, 1982.

    Book  Google Scholar 

  2. Storm FK (ed.). Hyperthermia in Cancer Therapy, G.K. Hall, Boston, 1983.

    Google Scholar 

  3. Homback NB (ed.). Hyperthermia and Cancer, CRC Press, Boca Raton, FL, 1984.

    Google Scholar 

  4. Storm FK, Harrison WH, Elliott RS, Morton DL. “Normal tissue and solid tumor effects of hyperthermia in animal tumor models and clinical trials,” Cancer Res. 39: 2245–2251 (1979).

    Google Scholar 

  5. Berns MW, Coffey J, Wile AG. “Laser photoradiation therapy of cancer: Possible role of hyperthermia,” Lasers Surg. Med. 4: 87–92 (1984).

    Article  Google Scholar 

  6. Kinsey JH, Cortese DA, Neel HB. “Thermal considerations in murine tumor killing usinghematoporphyrin derivative phototherapy,” Cancer Res. 43: 1562–1667 (1983).

    Google Scholar 

  7. Matsumoto N, Saito H, Miyosdhi N, Nakanishi K, Fukuda M. “Combination effect of hyperthermia and photodynamic therapy on carcinoma,” Arch. Otolaryngol. Head Neck Surg. 116: 824–829 (1990).

    Article  Google Scholar 

  8. Mang TS. “Combination studies of hyperthermia induced by the Nd:YAG laser as an adjuvant to photodynamic therapy,” Lasers Surg. Med. 10: 173–178 (1990).

    Article  Google Scholar 

  9. Svaasand LO. “Photodynamic and photohyperthermic response of malignant tumors,” Med. Phys. 12: 455–461 (1985).

    Article  Google Scholar 

  10. Waldow SM, Henderson BW, Dougherty TJ. “Potentiation of photodynamic therapy by heat: Effect of sequence and time interval between treatments in vivo,” Lasers Surg. Med. 5: 83–94 (1985).

    Article  Google Scholar 

  11. Henderson BW, Waldow SM, Potter WR, Dougherty TJ. “Interaction of photodynamic therapy and hyperthermia: Tumor response and cell survival studies after treatment of mice in vivo, “ Cancer Res. 45: 6071–6077 (1985).

    Google Scholar 

  12. Gottfried V, Kimel S. “Temperature effects on photosensitized processes,” J. Photochem. Photobiol. B 8: 419–439 (1991).

    Article  Google Scholar 

  13. Kimel S, Svaasand LO, Hammer-Wilson M, Gottfried V, Cheng S, Svaasand E, Berns MW. “Demonstration of synergistic effects of hyperthermia and photodynamic therapy using the chick chorioallantoic membrane model,” Lasers Surg. Med. 12: 432–440 (1992).

    Article  Google Scholar 

  14. Waldow SM, Dougherty TJ. “Interaction of hyperthermia and photoradiation therapy,” Radiat. Res. 97: 380–385 (1984).

    Article  Google Scholar 

  15. Svaasand LO, Gomer CJ, Profio AE. “Laser-induced hyperthermnia of ocular tumors,” Appl. Opt. 28(12): 2280–2287 (1989).

    Article  ADS  Google Scholar 

  16. Svaasand LO, Morinelli E, Gomer CJ, Profio AE. “Optical characteristics of intraocular tumors in the visible and near infrared,” in Progress in Biomedical Optics, SPIE 1213: 2–11 (1990).

    Google Scholar 

  17. Waldow SM, Russel GE, Wallner PE. “Microprocessor-controlled Nd:YAG laser for hyperthermia induction in the RIF-1 tumor,” Lasers Surg. Med. 12: 417–424 (1992).

    Article  Google Scholar 

  18. Elias Z, Powers SK, Atstupenas E, Brown JT. “Hyperthermia from interstitial laser irradiation in normal rat brain,” Lasers Surg. Med. 7: 370–375 (1987).

    Article  Google Scholar 

  19. Daikuzono N, Suzuki S, Tajiri H, Tsunekawa H, Ohyama M, Joffe SN. “Laserthermia: A new computer-controlled contact Nd:YAG system for interstitial local hyperthermia,” Lasers Surg. Med. 8: 254–258 (1988).

    Article  Google Scholar 

  20. Hahl J, Haapiainen R, Ovaska J, Puolakkainen P, Schroeder T. “Laser-induced hyperthermia in the treatment of liver tumors,” Lasers Surg. Med. 10: 319–321 (1990).

    Article  Google Scholar 

  21. Panjehpour M, Overholt BF, Milligan AJ, Swaggerty MW, Wilkinson JE, Klebanow ER. “Nd:YAG laser-induced interstitial hyperthermia using a long frosted contact probe,” Lasers Surg. Med. 10: 16–24 (1990).

    Article  Google Scholar 

  22. Hashimoto D, Takami M, Idezuki Y. “In depth radiation therapy by YAG laser for malignant tumours in the liver under ultrasonic imaging,” Gastroenterology 88: 1663 (1985).

    Google Scholar 

  23. Steger AC, Lees WR, Walmsley K, Bown SG. “Interstitial hyperthermia—A new approach to local destruction of tumours,” Br. Med. J. 299: 362–365 (1989).

    Article  Google Scholar 

  24. Svaasand LO, Boerslid T, Oeveraasen M. “Thermal and optical properties of living tissue: Application to laser-induced hyperthermia,” Lasers Surg. Med. 5: 589–602 (1985).

    Article  Google Scholar 

  25. Waldow SM, Morrison PR, Grossweiner LI. “Nd:YAG laser-induced hyperthermia in a mouse tumor model,” Lasers Surg. Med. 8: 510–514 (1988).

    Article  Google Scholar 

  26. Welch AJ. “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. QE-20: 1471–1480 (1984).

    Google Scholar 

  27. Welch AJ, Wissler EJ, Priebe LA. “Significance of blood flow in laser irradiated tissue,” IEEE Trans. Biomed. Eng. 27: 164–166 (1980).

    Article  Google Scholar 

  28. Svaasand LO. “On the propagation of thermal waves in blood perfused tissues,” Lasers Life Sci. 2(4): 289–311 (1988).

    Google Scholar 

  29. Weinbaum S, Jiji LM. “A new simplified bioheat equation for the effect of blood flow on local average tissue temperature,” Trans. ASME, J. Biomech. Eng. 107: 131–139 (1985).

    Article  Google Scholar 

  30. Gemert MJC van, Welch AJ. “Time constants in thermal laser medicine,” Lasers Surg. Med. 9: 405–421 (1989).

    Article  Google Scholar 

  31. Dickson AJ, Calderwood SK. “Thermosensitivity of neoplastic tissues in vivo,” in Storm FK (ed.), Hyperthermia in Cancer Therapy, G.K. Hall, Boston, 1983, pp. 63–129.

    Google Scholar 

  32. Henle KJ. “Arrhenius analysis of thermal responses,” in Storm FK (ed.), Hyperthermia in Cancer Therapy, G.K. Hall, Boston, 1983, pp. 47–53.

    Google Scholar 

  33. Chato JC. “Measurement of properties related to thermal behavior of biological systems,” in Shitzer A, Eberhart RC (eds.), Heat Transfer in Medicine and Biology: Analysis and Applications, Plenum Press, New York: Vol. 1, pp. 167–192; Vol. 2, pp. 413–418, 1985.

    Google Scholar 

  34. Pennes HH. “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol.1: 93–122 (1948).

    ADS  Google Scholar 

  35. Carslaw HS, Jaeger JC. Conduction of Heat in Solids, Oxford Science Publ., Oxford, 1959.

    Google Scholar 

  36. Kramer K, Thuran K, Deetjen P. Pfliigers Arch. Gesamte Physiol. Menschen Tiere 270: 751 (1960).

    Google Scholar 

  37. Ruch TC, Patton HD. Physiology and Biophysics, Saunders, Philadelphia, 1965.

    Google Scholar 

  38. Johnson CC. “Optical diffusion in blood,” IEEE Trans. Biomed. Eng. 17: 129–133 (1970).

    Article  Google Scholar 

  39. Ishimaru A. “Diffusion of light in turbid materials,” Appl. Opt. 28: 2210–2215 (1989).

    Article  ADS  Google Scholar 

  40. Patterson MS, Chance B, Wilson BC. “Time-resolved reflectance and transmittance for the non-invasive measurements of tissue optical properties,” Appl. Opt. 28: 2331–2336 (1989).

    Article  ADS  Google Scholar 

  41. Svaasand LO, Tromberg BJ, Haskell RC, Tsay TT, Berns MW. “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32: 258–266 (1993).

    Article  ADS  Google Scholar 

  42. Svaasand LO, Haskell RC, Tromberg BJ, McAdams M. “Properties of photon density waves at boundaries,” Conference on Biomedical Optics ’93, SPIE Proc. 1888: 214–226, Jan. 1993.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Svaasand, L.O. (1995). Physics of Laser-Induced Hyperthermia. In: Welch, A.J., Van Gemert, M.J.C. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6092-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6092-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6094-1

  • Online ISBN: 978-1-4757-6092-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics