Skip to main content

Production of the Heaviest Elements 107 to 109, Limitations, and Prospects to go Beyond

  • Chapter
Atoms in Unusual Situations

Part of the book series: Nato ASI Series ((NSSB,volume 143))

Abstract

In recent years isotopes of the elements 107 to 109 were discovered. Together with studies on the isotopes of the elements 104–106 it was established that beyond element 105 the main decay mode for isotopes with (N–Z) = (47–49) is α-decay. The trend of strongly increasing instability against spontaneous fission for the heaviest elements is broken. The isotope260, 106 has a partial halflife against spontaneous fission of about 7 ms, which is to be compared to a halflife of 8 ms for256, 104. The long α-chains detected allow to determine the absolute masses. Together with macroscopic mass values the shell correction energies are obtained. It is shown that the fission barrier for the (N–Z) = 48-isotopes of the heaviest elements stay constant at a value of about 6 MeV, in spite of vanishing macroscopic fission barriers. From an analysis of the mass values and the spontaneous fission halflives it follows, that the heaviest isotopes detected are protected against spontaneous fission by a single humped narrow fission barrier, which is due to shell corrections, e.g. the isotope260 106 is shell stabilized by 15 orders of magnitude in its halflife against spontaneous fission. Paskevich et al. and Møller et al. independently predict the nuclei to be deformed and to have a strong negative ß4 deformation (sausage-like). The isotopes investigated are shell stabilized isotopes of superheavy elements (SHE), in the sense that SHE are elements unstable within macroscopic models but stabilized by shell effects to halflives long enough to be detected still.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. O. Fiset and J.R. Nix, Nucl.Phys. A193:647 (1972).

    ADS  Google Scholar 

  2. K. Takahashi et al., At.Data and Nucl.Data Tables 12:101 (1973).

    Article  ADS  Google Scholar 

  3. G. A. Leander et al., Proceedings of the 7th International Conf. on Atomic Masses and Fundamental Constants, AMCO-7, Darmstadt-Seeheim, p.466 (1984) and private communication.

    Google Scholar 

  4. W. D. Myers, W.J. Swiatecki, Nucl.Phys. 81:1 (1966).

    Google Scholar 

  5. S. G. Nilsson et al., Nucl.Phys. A131: l (1969).

    Google Scholar 

  6. Y. T. Oganessian, Lect.Notes Phys. 33:221 (1974).

    Article  ADS  Google Scholar 

  7. P. Armbruster, Ann.Rev.of Nucl.and Part.Science 35:135 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Münzenberg et al., Nucl.Instr.Meth. 161:65 (1979).

    Article  Google Scholar 

  9. Y. T. Oganessian et al., JETP Lett. 20:265 (1974).

    ADS  Google Scholar 

  10. J. Randrup et al., Phys.Rev. C13:229 (1976).

    ADS  Google Scholar 

  11. S. Hofmann et al., Nucl.Instr.Meth. 223:312 (1984).

    Article  Google Scholar 

  12. F. P. Heßberger et al., GSI Annual Report 1981, p.66 (1982); Z.Phys.

    Google Scholar 

  13. G. Münzenberg et al., Z.Phys. A300:107 (1981).

    ADS  Google Scholar 

  14. G. Münzenberg et al., Z.Phys. A309:89 (1982).

    ADS  Google Scholar 

  15. Y. T. Oganessian et al., Radiochemica Acta 37:113 (1984).

    Google Scholar 

  16. A. G. Demin et al., Z.Phys. A315:197 (1984).

    ADS  Google Scholar 

  17. G. Münzenberg et al., Z.Phys. A317:235 (1984).

    ADS  Google Scholar 

  18. Y. T. Oganessian et al., Z.Phys. A319:215 (1984).

    ADS  Google Scholar 

  19. W. D. Myers, “Droplet Model of Atomic Nuclei,” IFI/Plenum,&New York (1973).

    Google Scholar 

  20. H. v. Groote et al., At.Data and Nucl.Data Tables 17:418 (1976).

    Article  ADS  Google Scholar 

  21. P. A. Seeger and W.M. Howard, Nucl.Phys. A238:49 (1975).

    Google Scholar 

  22. S. Liran and N. Zeldes, At.Data and Nucl.Data Tables 17:431 (1976).

    Article  ADS  Google Scholar 

  23. P. Møller and J. R. Nix, At.Data and Nucl.Data Tables 26:165 (1981).

    Article  ADS  Google Scholar 

  24. P. Armbruster, “The Int. School of Physics ‘Enrico Fermi’,” Varenna (1984).

    Google Scholar 

  25. S. Cwiok et al., Nucl.Phys. A410:254 (1983).

    ADS  Google Scholar 

  26. Y. T. Oganessian et al., JINR P 7-12054, Dubna (1978).

    Google Scholar 

  27. A. Ghiorso et al., Phys.Rev.Lett. 33:1490 (1974).

    Article  ADS  Google Scholar 

  28. K. H. Schmidt et al., Z.Phys. A315:159 (1984).

    ADS  Google Scholar 

  29. P. Armbruster et al., Phys.Rev.Lett. 54:406 (1985).

    Article  ADS  Google Scholar 

  30. M. Dahlinger et al., Nucl.Phys. A376:94 (1982).

    ADS  Google Scholar 

  31. F. P. Heßberger, Thesis, TH Darmstadt (1984).

    Google Scholar 

  32. S. Bjørnholm et al., Nucl.Phys. A391:471 (1982).

    ADS  Google Scholar 

  33. G. Müzenberg et al., Z.Phys.

    Google Scholar 

  34. Y. T. Oganessian et al., Pis’ma Zh.Eksp.Theor.Fiz. 20:580 (1974).

    Google Scholar 

  35. Y. T. Oganessian et al., Nucl.Phys. A273:505 (1976).

    ADS  Google Scholar 

  36. Y. T. Oganessian, “Int. School-Seminar on Heavy Ion Physics,” Alushta, JINR D7-83-644, p.55, Dubna (1983).

    Google Scholar 

  37. G. Münzenberg et al., Z.Phys. A315:145 (1984).

    ADS  Google Scholar 

  38. H. Gäggeler et al., Z.Phys. A316:291 (1984).

    ADS  Google Scholar 

  39. R. Bass, Nucl.Phys. A231:45 (1974).

    ADS  Google Scholar 

  40. P. Armbruster, “Proc. Int. Conf. on Nuclear Physics,” Florence, Italy, P. Blasi and R. A. Ricci, eds., p.343, Bologna, Tipografia Compositori (1983).

    Google Scholar 

  41. R. Bass, “Proc. Symp. on Deep-Inelastic and Fusion Reactions with Heavy Ions,” Lect.Notes Phys. 117:281 (1980).

    Article  ADS  Google Scholar 

  42. A. V. Ignatyuk et al., Sov.J.Nucl.Phys. 21:255 (1975).

    Google Scholar 

  43. K. H. Schmidt et al., Z.Phys. A308:215 (1982).

    ADS  Google Scholar 

  44. A. S. Iljinov and E. A. Cherepanov, JINR P-7-84-68 Dubna (1984).

    Google Scholar 

  45. H. Delagrange et al., Phys.Rev.Lett. 39:867 (1977).

    Article  ADS  Google Scholar 

  46. K. H. Schmidt et al., “Proc. Symp. Phys. Chem of Fission, Jülich 1979,” Vienna, IAEA:1 (1980).

    Google Scholar 

  47. C. C. Sahm et al., Nucl.Phys. A441:316 (1985).

    ADS  Google Scholar 

  48. J. G. Keller, Thesis, TH Darmstadt (1984).

    Google Scholar 

  49. C. C. Sahm et al., Z.Phys. A319:113 (1984)

    ADS  Google Scholar 

  50. C.-C. Sahm, Thesis, TH Darmstadt (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armbruster, P. (1986). Production of the Heaviest Elements 107 to 109, Limitations, and Prospects to go Beyond. In: Briand, J.P. (eds) Atoms in Unusual Situations. Nato ASI Series, vol 143. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9337-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9337-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9339-0

  • Online ISBN: 978-1-4757-9337-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics