Skip to main content

Interactions of Zinc with Other Micronutrients

  • Chapter
Biochemistry of Zinc

Part of the book series: Biochemistry of the Elements ((BOTE,volume 11))

Abstract

During the past two decades, it has become clear that the addition of a trace element to the animal diet alters the metabolism of other elements. In some instances the interaction between the added element and the responding element is complementary. For example, the dietary level of iron needed to maintain a given concentration of hemoglobin is dependent on the dietary copper level (Hill and Matrone, 1961). A majority of other interactions, however, are of antagonistic nature. For example, high levels of zinc added to diets are known to precipitate copper deficiency in animals and humans (Hill and Matrone, 1970; Prasad et al., 1978a). Several years ago, Hill and Matrone (1961) proposed that those elements whose electronic structure of the valence shell of the ions was the same, would act antagonistically to each other in biological systems (Hill, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Hamdan, D. K., Mahajan, S. K., Migdal, S. D., Prasad, A. S., and McDonald, F. D., 1984. Zinc absorption in uremia: Effects of phosphate binders and iron supplements, J. Am. Coll. Nutr. 3: 283.

    Google Scholar 

  • Aggett, P. J., Crofton, R. W., Khin, C., Gvozdanovic, S., and Gvozdanovic, D., 1983. The mutual inhibitory effects on their bioavailability of inorganic zinc and iron, in Zinc Deficiency in Human Subjects ( A. S. Prasad, A. O. Cavder, G. J. Brewer, and P. J. Aggett, eds.), Liss, New York, p. 117.

    Google Scholar 

  • Ahokas, R. A., Dilts, P. V., and Lahaye, E. B., 1980. Cadmium-induced fetal growth retardation: Protective effect of excess dietary zinc, Am. J. Obstet. Gynecol. 136: 216.

    CAS  Google Scholar 

  • Ashrafi, M. H., and Fosmire, G. J., 1985. Effects of marginal zinc deficiency and subclinical lead toxicity in the rat neonate, J. Nutr. 115: 334.

    Google Scholar 

  • Baudier, J., Haglid, K., Haiech, J., and Gerard, D., 1983. Zinc ion binding to human calcium-binding proteins, calmodulin and S100b protein, Biochem. Biophys. Res. Commun. 114: 1138.

    Article  CAS  Google Scholar 

  • Bremner, I., Young, B. W., and Mills, C. F., 1976. Protective effect of zinc supplementation against copper toxicosis in sheep, Br. J. Nutr. 36: 551.

    Article  CAS  Google Scholar 

  • Breskin, M. W., Worthington-Roberts, B. S., Knopp, R. H., Brown, Z., Plovie, B., Mottet, N. K., and Mills, J. L., 1983. First trimester serum zinc concentration in human pregnancy, Am. J. Clin. Nutr. 38: 943.

    CAS  Google Scholar 

  • Brewer, G. J., 1980. Calmodulin, zinc and calcium in cellular membrane regulation, Am. J. Hematol. 8: 231.

    CAS  Google Scholar 

  • Brewer, G. J., Aster, J. C., Knutsen, C. A., and Kruckberg, W. C., 1979. Zinc inhibition of calmodulin: A proposed molecular mechanism of zinc action on cellular function, Am. J. Hematol. 7: 53.

    Article  CAS  Google Scholar 

  • Brewer, G. J., Hill, G. M., Prasad, A. S., Cossack, Z. T., and Rabbani, P., 1983. Oral zinc therapy for Wilson’s disease, Ann. Intern. Med. 99: 314.

    CAS  Google Scholar 

  • Brewer, G. J., Hill, G. M., Dick, R. D., Nostrant, T. T., Sams, J. S., Wells, J. J., and Prasad, A. S., 1987a. Treatment of Wilson’s disease with zinc. III. Prevention of reaccumulation of hepatic copper, J. Lab. Clin. Med. 109: 526.

    CAS  Google Scholar 

  • Brewer, G. J., Hill, G. M., Prasad, A. S., and Dick, R., 1987b. The treatment of Wilson’s disease with zinc. IV. Efficacy monitoring using urine and plasma copper, Proc. Soc. Exp. Biol. Med. 184: 446.

    CAS  Google Scholar 

  • Burch, R. E., Williams, R. V., Hahn, H. K. J., Jetton, M. M., and Sullivan, J. F., 1975. Serum and tissue enzyme activity and trace element content in response to zinc deficiency in the pig, Clin. Chem. 21: Washington, D.C., 568.

    Google Scholar 

  • Campbell-Brown, M., Ward, R. J., Haines, A. P., North, W. R. S., Abraham, R., and McFayden, I. R., 1985. Zinc and copper in Asian pregnancies: Is there evidence for a nutritional deficiency? Br. J. Obstet. Gynecol. 92: 975.

    Google Scholar 

  • Cox, D. H., and Harris, D. L., 1960. Effect of excess dietary zinc on iron and copper in the rat, J. Nutr. 70: 514.

    CAS  Google Scholar 

  • Cunnane, S. C., 1988. Zinc: Clinical and Biochemical Significance, CRC Press, Boca Raton, Fla., p. 113.

    Google Scholar 

  • Duncan, G. D., Gray, L. F., and Daniel, L. J., 1953. Effect of zinc on cytochrome oxidase activity, Proc. Soc. Exp. Biol. Med. 83: 625.

    CAS  Google Scholar 

  • Evans, G. W., Grace, C. I., and Hahn, C., 1974. The effect of copper and cadmium on 65Zn absorption in zinc-deficient and zinc-supplemented rats, Bioinorg. Chem. 3: 115.

    Article  CAS  Google Scholar 

  • Flanagan, P. R., and Valberg, L. S., 1988. The intestinal interaction of zinc and iron in humans: Does it occur with food? in Essential and Toxic Trace Elements in Human Health and Disease ( A. S. Prasad, ed.), Liss, New York, p. 501.

    Google Scholar 

  • Flanagan, P. R., Haist, J., and Valberg, L. S., 1983. Zinc absorption, intraluminal zinc and intestinal metallothionein levels in zinc deficient and zinc repleted rodents, J. Nutr. 113: 962.

    CAS  Google Scholar 

  • Flanagan, P. R., Haist, J., MacKenzie, I., and Valberg, L. S., 1984. Intestinal absorption of zinc: Competitive interactions with iron, cobalt, and copper in mice with sex-linked anemia (sla), Can. J. Physiol. Pharmacol. 62: 1124.

    Article  CAS  Google Scholar 

  • Forth, W., and Rummel, W., 1973. Iron absorption, Physiol. Rev. 63: 724.

    Google Scholar 

  • Grace, N. D., 1973. Effect of high dietary Mn levels on the growth rate and the level of mineral elements in the plasma and soft tissues of sheep, N.Z. J. Agric. Res. 16: 177.

    Article  CAS  Google Scholar 

  • Hall, A. C., Young, B. W., and Bremner, I., 1979. Intestinal metallothionein and the mutual antagonism between copper and zinc in the rat, J. Inorg. Biochem. 11: 57.

    Article  CAS  Google Scholar 

  • Hambidge, K. M., Krebs, N. F., Jacobs, M. A., Favier, A., Guyette, L., and Ickle, D. N., 1983. Zinc nutritional status during pregnancy: A longitudinal study, Am. J. Clin. Nutr. 37: 429.

    CAS  Google Scholar 

  • Hamilton, R. P., Fox, M. R. S., Fry, B. E., Jr., Jones, A. O. L., and Jacobs, R. M., 1979. Zinc interference with copper, iron and manganese in young Japanese quail, J. Food Sci. 44: 738.

    Article  CAS  Google Scholar 

  • Hanson, L. J., Sorenson, D. K., and Kernkamp, H. C. H., 1958. Essential fatty acid deficiencyIts role in parakeratosis, Am. J. Vet. Res. 18: 1921.

    Google Scholar 

  • Heiseke, D., and Kirchgessner, M., 1978. Eisen-und Zinkgehalte in verschiedenen Organen der Ratte bei Mangan-Mangel, Zentralbl. Veterinaermed. Reihe A 25: 307.

    Article  CAS  Google Scholar 

  • Hill, C. H., 1976. Mineral interrelationships, in Trace Elements in Human Health and Disease, Vol. II ( A. S. Prasad, ed.), Academic Press, New York, p. 281.

    Google Scholar 

  • Hill, C. H., 1988. Interactions among trace elements, in Essential and Toxic Trace Elements in Human Health and Disease ( A. S. Prasad, ed.), Liss, New York, p. 491.

    Google Scholar 

  • Hill, C. H., and Matrone, G., 1961. Studies on copper and iron deficiencies in growing chickens, J. Nutr. 73: 425.

    CAS  Google Scholar 

  • Hill, C. H., and Matrone, G., 1970. Chemical parameters in the study of in vivo and in vitro interactions of transition elements, Fed. Proc. 29: 1474.

    CAS  Google Scholar 

  • Hill, G. M., Brewer, G. J., Juni, J. E., Prasad, A S., and Dick, R. D., 1986. Treatment of Wilson’s disease with zinc. II. Validation of oral 64copper with copper balance, Am. J. Med. Sci. 292: 344.

    Article  CAS  Google Scholar 

  • Hirschberg, R., Von Herrath, D., Vob, K., Bosaller, W., Mauelshagen, U., Pauls, A., and Schaefer, K., 1985. Parathyroid hormone and 1,25-dihydroxyvitamin D3 affect the tissue concentrations of zinc in uremic rats, Nephron 39: 277.

    Article  CAS  Google Scholar 

  • Hirschman, S. Z., and Isselbacher, K. J., 1965. The nephrotic syndrome as a complication of penicillamine therapy of hepatolenticular degeneration (Wilson’s disease), Ann. Intern. Med. 62: 1297.

    CAS  Google Scholar 

  • Hsu, J. M., 1965. Zinc content in pyridoxine deficient rats, Proc. Soc. Exp. Biol. Med. 119: 177.

    CAS  Google Scholar 

  • Hurley, L. S., and Tao, S. H., 1972. Alleviation of teratogenic effects of zinc deficiency by simultaneous lack of calcium, Am. J. Physiol. 222: 322.

    CAS  Google Scholar 

  • Ikeda, M., Hosotani, T., Ueda, T., Kotake, Y., and Sakeibara, B., 1979. Observations of the concentration of zinc and iron in tissues of vitamin B6 deficient germ-free rats, J. Nutr. Sci. VitaminoL 25: 151.

    Article  CAS  Google Scholar 

  • Ivan, M., and Grieve, C. M., 1975. Effects of zinc, copper, and manganese supplementation of high concentrate ration on digestibility, growth, and tissue content of Holstein calves, J. Dairy Sci. 58: 410.

    Article  CAS  Google Scholar 

  • Jarvinen, R., and Ahlstrom, A., 1975. Effect of the dietary manganese level on tissue manganese, iron, copper, and zinc concentrations in female rats and their fetuses, Med. Biol. 53: 93.

    CAS  Google Scholar 

  • Kang, H. K., Harvey, P. W., Valentine, J. L., and Swendseid, M. E., 1977. Zinc, iron, copper and magnesium concentrations in tissues of rats fed various amounts of zinc, Clin. Chem. 23: Washington, D.C., 1834.

    Google Scholar 

  • Kirchgessner, M., Schwarz, F. J., and Schnegg, A., 1982. Interactions of essential metals in human physiology, in Clinical, Biochemical, and Nutritional Aspects of Trace Elements ( A. S. Prasad, ed.), Liss, New York, p. 477.

    Google Scholar 

  • Kubena, K. S., Landmann, W. A., Young, C. R., and Carpenter, Z. L., 1985. Influence of magnesium deficiency and soy protein on magnesium and zinc status in rats, Nutr. Res. 5: 317.

    Article  CAS  Google Scholar 

  • Lucis, O. J., Lucis, R., and Shaikh, Z. A., 1972. Cadmium and zinc in pregnancy and lactation, Arch. Environ. Health 25: 14.

    CAS  Google Scholar 

  • McCormick, D. B., Gregory, M. E., and Snell, E. E., 1961. Pyridoxal phosphokinase I: Assay, distribution, purification and properties, J. Biol. Chem. 236: 2076.

    CAS  Google Scholar 

  • Magee, A. C., and Matrone, G., 1960. Studies on growth, copper metabolism and iron metabolism on rats fed high levels of zinc, J. Nutr. 72: 233.

    CAS  Google Scholar 

  • Mahloudji, M., Reinhold, J. G., Haghasenass, M., Ronaghy, H. A., Spivey-Fox, M. R. S., and Halsted, J. A., 1975. Combined zinc and iron supplementation of diets of 6- and 12-yearold school children in southern Iran, Am. J. Clin. Nutr. 28: 721.

    CAS  Google Scholar 

  • Matseshe, J. W., Phillips, S. F., Malagelada, J. R., and McCall, J. T., 1980. Recovery of dietary iron and zinc from the proximal intestine of healthy man: Studies of different meals and supplements, Am. J. Clin. Nutr. 33: 1946.

    CAS  Google Scholar 

  • Matustik, M. C., Chausner, A. B., and Meyer, W. J., 1982. The effect of sodium intake on zinc excretion in patients with sickle cell anemia, J. Am. Coll. Nutr. 1: 331.

    CAS  Google Scholar 

  • Moses, H. A., and Parker, H. E., 1964. Influence of dietary zinc and age on the mineral content of rat tissues, Fed. Proc. 23: 132.

    Google Scholar 

  • Neary, J. T., and Divan, W. F., 1970. Purification, properties and a possible mechanism for pyridoxal kinase for bovine brain, J. Biol. Chem. 245: 5585.

    CAS  Google Scholar 

  • Payton, K. B., Flanagan, P. R., Stinson, E. A., Chrodiker, D. R., Chamberlain, M. J., and Valberg, L. S., 1982. Technique for determination of human zinc absorption from measurement of radioactivity in a fecal sample of the body, Gastroenterology 83: 1264.

    CAS  Google Scholar 

  • Petering, H. G., Johnson, M. A., and Horwitz, J. P., 1971. Studies of zinc metabolism in the rat, Arch. Environ. Health 23: 93.

    CAS  Google Scholar 

  • Pollack, S., George, J. N., Reba, R. C., Kaufman, R. M., and Crosby, W. J., 1965. The absorption of nonferrous metals in iron deficiency, J. Clin. Invest. 44: 1470.

    Article  CAS  Google Scholar 

  • Prasad, A. S., Oberleas, D., Wolf, P., and Horwitz, J. P., 1967. Studies on zinc deficiency: Changes in trace elements and enzyme activities in tissues of zinc deficient rats, J. Clin. Invest. 46: 549.

    Article  CAS  Google Scholar 

  • Prasad, A. S., Oberleas, D., Wolf, P., Horwitz, J. P., Miller, E. R., and Luecke, R. W., 1969a. Changes in trace elements and enzyme activities in tissues of zinc deficient pigs, Am. J. Clin. Nutr. 22: 628.

    CAS  Google Scholar 

  • Prasad, A. S., Oberleas, D., Wolf, P., and Horwitz, J. P., 1969b. Effect of growth hormone on nonhypophysectomized zinc deficient rats and zinc on hypophysectomized rats, J. Lab. Clin. Med. 73: 486.

    CAS  Google Scholar 

  • Prasad, A. S., Brewer, G. J., Schoomaker, E. B., and Rabbani, P., 1978a. Hypocupremia induced by zinc therapy in adults, J. Am. Med. Assoc. 240: 2166.

    Article  CAS  Google Scholar 

  • Prasad, A. S., Rabbani, P., Abassi, A., Bowersox, E., and Spivey-Fox, M. R. S., 1978b. Experimental zinc deficiency in humans, Ann. Intern. Med. 89: 483.

    CAS  Google Scholar 

  • Richards, M. P., and Cousins, R. J., 1975. Mammalian zinc homeostasis: Requirement for RNA and metallothionein synthesis, Biochem. Biophys. Res. Commun. 64: 1215.

    Article  CAS  Google Scholar 

  • Richards, M. P., and Cousins, R. J., 1976. Metallothionein and its relationship to the metabolism of dietary zinc in rats, J. Nutr. 106: 1591.

    CAS  Google Scholar 

  • Roth, H. P., and Kirchgessner, M., 1977. Zum Gehalt von Zink, Kupfer, Eisen, Mangan and Calcium in Knochen and Lebern von an Zink depletierter and repleiterter Ratten, Zentralbi. Veterinaermed. Reihe A 24: 177.

    Google Scholar 

  • Roth, H. P., and Kirchgessner, M., 1979. Zinc und Chromgehalte in Serum, Pankreas und Leber von Zn-Mangelratten nach Glucosetimulierung, Z. Tierphysiol. Tierernaehr. Futtermittelkd. 42: 277.

    Article  CAS  Google Scholar 

  • Sandstrom, B., Davidson, L., Cederblad, A., and Lonnerdal, B., 1985. Oral iron, dietary ligands and zinc absorption, J. Nutr. 115: 411.

    CAS  Google Scholar 

  • Schroeder, H. A., Baker, J. T., Hansen, N. M., Size, J. G., and Wise, R. A., 1970. Vascular reactivity of rats altered by cadmium and a zinc chelate, Arch. Environ. Health 21: 609.

    CAS  Google Scholar 

  • Schwarz, F. J., and Kirchgessner, M., 1973. Intestinale Cu-Absorption in vitro nach. Fe-oder Zn-Depletion, Z. Tierphysiol. Tierernaehr. Futtermittelkd. 31: 91.

    Article  CAS  Google Scholar 

  • Schwarz, F. J., and Kirchgessner, M., 1974a. Absorption von Zink-65 und Kupfer-64 im Zinkmangel, Int. J. Vitam. Nutr. Res. 44: 258.

    CAS  Google Scholar 

  • Schwarz, F. J., and Kirchgessner, M., 1974b. Wechselwirkungen bei der intestinalen Absorption von “Cu, 65Zn and 59Fe nach Cu-, Zn-oder Fe-Depletion, Int. J. Vitam. Nutr. Res. 44: 116.

    CAS  Google Scholar 

  • Schwarz, F. J., and Kirchgessner, M., 1979. Kupfer-, Zink-, Eisen-und Mangankonzentrationen im Serum in Knochen und der Leber nach Kupferdepletion, Zentralbl. Veterinaermed. Reihe A 26: 493.

    CAS  Google Scholar 

  • Schwarz, F. J., and Kirchgessner, M., 1980. Experimentelle Untersuchungen zur Interaktion Zwischen den Spurenelementen Zink und Mangan, Z. Tierphysiol. Tierernaehr. Futtermittelkd. 43: 272.

    Article  CAS  Google Scholar 

  • Settlemire, C. T., and Matrone, G., 1967a. In vivo effect of zinc on iron turnover in rats and life span of the erythrocyte, J. Nutr. 92: 159.

    CAS  Google Scholar 

  • Settlemire, C. T., and Matrone, G., 1967b. In vivo interference of zinc with ferritin iron in the rat, J. Nutr. 92: 153.

    CAS  Google Scholar 

  • Smith, J. C., Jr., 1982. Interrelationship of zinc and vitamin A metabolism in animal and human nutrition: A review, in Clinical, Biochemical, and Nutritional Aspects of Trace Elements ( A. S. Prasad, ed.), Liss, New York, p. 239.

    Google Scholar 

  • Smith, J. C., Jr., Brown, E. D., McDaniel, E. G., and Chan, W., 1976. Alterations in vitamin A metabolism during zinc deficiency and food and growth restriction, J. Nutr. 106: 569.

    CAS  Google Scholar 

  • Solomons, N. W., 1983. Competitive mineral:mineral interactions in the intestine: Implications for zinc absorption in humans, in Nutritional Bioavailability of Zinc, ACS Symposium Series. American Chemical Society, Washington, D.C., p. 247.

    Google Scholar 

  • Solomons, N. W., 1988. The iron:zinc interaction in the human intestine. Does it exist? An affirmative view, in Essential and Toxic Trace Elements in Human Health and Disease ( A. S. Prasad, ed.), Liss, New York, p. 509.

    Google Scholar 

  • Solomons, N. W., and Jacob, R. A., 1981. Studies on the bioavailability of zinc in humans: Effect of heme and nonheme iron on the absorption of zinc, Am. J. Clin. Nutr. 34: 475.

    CAS  Google Scholar 

  • Solomons, N. W., Pineda, O., Viteri, F., and Sandstead, H. H., 1983a. Studies on the bioavailability of zinc in humans: Mechanism of the intestinal interaction of nonheme iron and zinc, J. Nutr. 113: 337.

    CAS  Google Scholar 

  • Solomons, N. W., Marchini, J. S., Duarte-Favaro, R. M., Vannuchi, H., and Dutra de Oliveira, J. E., 1983b. Studies on the bioavailability of zinc in humans. VI. Intestinal interaction of tin and zinc, Am. J. Clin. Nutr. 37: 566.

    CAS  Google Scholar 

  • Steinhardt, H. J., and Adibi, S. A., 1984. Interaction between transport of zinc and other solute in human intestine, Am. J. Physiol. 247:G 176.

    Google Scholar 

  • Stowe, H. D., 1976. Biliary excretion of cadmium by rats: Effects of zinc, cadmium and selenium pre-treatments, J. Toxicol. Environ. Health 2: 45.

    Article  CAS  Google Scholar 

  • Suttle, N. F., and Mills, C. F., 1966a. Studies on the toxicity of copper to pigs. 1: Effects of oral supplements of zinc and iron salts at the development of copper toxicosis, Br. J. Nutr. 20: 135.

    Article  CAS  Google Scholar 

  • Suttle, N. F., and Mills, C. F., 1966b. Studies on the toxicity of copper to pigs. 2: Effect of protein source and other dietary components on the response to high and moderate intakes of copper, Br. J. Nutr. 20: 149.

    Article  CAS  Google Scholar 

  • Swenerton, H., and Hurley, L. S., 1968. Severe zinc deficiency in male and female rats, J. Nutr. 95: 8.

    CAS  Google Scholar 

  • Valberg, L. S., Flanagan, P. R., and Chamberlain, M. J., 1984. Effects of iron, tin, and copper on zinc absorption in humans, Am. J. Clin. Nutr. 40: 536.

    CAS  Google Scholar 

  • Reen, R., 1953. Effects of excessive dietary zinc in the rat and the interrelationship with copper, Arch. Biochem. Biophys. 46: 337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prasad, A.S. (1993). Interactions of Zinc with Other Micronutrients. In: Biochemistry of Zinc. Biochemistry of the Elements, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9444-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9444-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9446-5

  • Online ISBN: 978-1-4757-9444-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics