Skip to main content

The Dynamic Parameter

Fluorescence Photobleaching as a Tool to Dissect Space in Biological Systems

  • Chapter
Biophysical and Biochemical Aspects of Fluorescence Spectroscopy

Abstract

The viability of organisms is dependent on the controlled flow of information and metabolic/synthetic precursors between cellular compartments. Such processes are elaborated upon as a hierarchy of interdependence established between cells and tissues. Through the ebb and flow of signaling and metabolic molecules, dynamic linkages may be maintained between cells for the coordination, synchronization, and initiation of cellular cycles (Fig. 1). In this manner, organismal response to the environment may be viewed as the result of a linked web of dissipative molecular gradients across biological membranes that initiate and transmit environmental information and cellular status. Integration of these gradients over large numbers of cells and tissues collectively leads to spatial and/or temporal responses. The biological structures that serve as controllable elements for transmembrane molecular flow are generally classified as channels or pores that serve either as passive transport routes for low-molecular-weight molecules (Loewenstein, 1979; Nikaido and Nakae, 1979; Gunning and Overall, 1983) or as ion pumps or transporters requiring some type of coupled gradient dissipation or energy

Dynamic linkages between organelles and cells. Chemical gradients are utilized to transmit information between the cell and the environment. The pathways involved in this transmission system are: lateral mobility of membrane receptors (1); transplasma membrane transport through channels, pores, and transporters (2); homotypic intercellular communication through gap junctions or plasmodesmata (3); nucleocytoplasmic transport (4); translysosomal or vacuolar membrane transport of H+ and ions (5); Golgi-mediated processing, secretion, and recycling (6); Golgi transport of newly synthesized proteins (cis-medial-trans) (7); heterotypic intercellular communication (8). R, N, and G represent membrane receptors, the nucleus, and Golgi, respectively.

source for molecular transposition (Mitchell, 1979; Noma, 1983; Reuter et al., 1983). In most instances, the control of these channels is mediated by ligand-specific receptors that couple to the channels under activating conditions, initiating a cascade of enzymatic changes resulting in a modification of channel transport properties (Koshland, 1981; Bean et al., 1983; Hondeghem and Katzung, 1984). In other cases, transport channels and receptors are intimately linked, forming a common structure, as in the case of the nicotinic acid receptor/channel (Conti-Tronconi and Raftery, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schindler, M., Gharyal, P.K., Jiang, LW. (1991). The Dynamic Parameter. In: Dewey, T.G. (eds) Biophysical and Biochemical Aspects of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9513-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9513-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9515-8

  • Online ISBN: 978-1-4757-9513-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics