Skip to main content

Visual Processing in Macaque Area MT/V5 and Its Satellites (MSTd and MSTv)

  • Chapter
Extrastriate Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 12))

Abstract

It is now well established that monkey extrastriate cortex, the visual cortex beyond primary or striate cortex, contains many different areas (for review, see Van Essen et al., 1992; Felleman and Van Essen, 1991). Of these 30 or so extra-striate areas, a small group in the caudal superior temporal sulcus (STS) stands out because their neurons share the property of direction selectivity, suggesting that these areas might be involved in the analysis of retinal motion and in motion perception. A large number of studies have been devoted to substantiating and clarifying the role of the middle temporal (MT) area, also referred to as V5, and that of its satellites, the dorsal and ventral parts of the medial superior temporal (MST) visual area. Although area MT/V5 was discovered almost simultaneously in macaque monkeys (Zeki, 1969, 1971) and in owl monkeys (Allman and Kaas, 1971) and there are a number of similarities between these areas of the two species, this review will be restricted to the macaque monkey. Indeed, with the passage of time, differences between MT of the two species have become apparent (Sereno and Allman, 1991; Zeki, 1980) and the macaque as a species is closer to the human (Ciochon and Chiarelli, 1980). A further restriction will be that for the physiological studies preference will be given to the more recent, quantitative data. Since the physiology of macaque visual cortex, and particularly of area MT/V5 and its satellites, has been a major source of inspiration for recent human functional imaging work, the homologues of MT/V5 and MST in humans will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, E. H., and Movshon, J. A., 1982, Phenomenal coherence of moving visual patterns, Nature 300: 523–525.

    PubMed  CAS  Google Scholar 

  • Albright, T. D., 1984, Direction and orientation selectivity of neurons in visual area MT of the macaque, J. Neurophysiol. 52: 1106–1130.

    PubMed  CAS  Google Scholar 

  • Albright, T. D., 1989, Centrifugal directional bias in the middle temporal visual area (MT) of the macaque, Visual Neurosci. 2: 177–188.

    CAS  Google Scholar 

  • Albright, T. D., 1992, Form-cue invariant motion processing in primate visual cortex, Science 255: 1141–1143.

    PubMed  CAS  Google Scholar 

  • Albright, T. D., 1993, Cortical processing of visual motion, in: Visual Motion and its Role in the Stabilization of Gaze ( F. A. Miles, and J. Wallman, eds.), Elsevier, Amsterdam, pp. 177–201.

    Google Scholar 

  • Albright, T. D., and Desimone, R., 1987, Local precision of visuotopic organization in the middle temporal area (M-r) of the macaque, Exp. Brain Res. 65: 582–592.

    PubMed  CAS  Google Scholar 

  • Albright, T. D., Desimone, R., and Gross, C. G., 1984, Columnar organization of directionally selective cells in visual area MT of the macaque, J. Neurophysiol. 51: 16–31.

    PubMed  CAS  Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus), Brain Res. 31: 85–105.

    PubMed  CAS  Google Scholar 

  • Allman, J., Miezin, F., and McGuinness, E. L., 1985, Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT), Perception 14: 105–126.

    PubMed  CAS  Google Scholar 

  • Andersen, R. A., Essick, G. K., and Siegel, R. M., 1985, Encoding of spatial location by posterior parietal neurons, Science 230: 456–458.

    PubMed  CAS  Google Scholar 

  • Bair, W., Koch, C., Newsome, W., and Britten, K., 1994, Power spectrum analysis of bursting cells in area MT in the behaving monkey, J. Neurosci. 14: 2870–2892.

    PubMed  CAS  Google Scholar 

  • Baker, J. F., Petersen, S. E., Newsome, W. T., and Allman, J. M., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus), J. Neurophysiol. 45: 397–416.

    PubMed  CAS  Google Scholar 

  • Born, R. T., and Tootell, R. B. H., 1992, Segregation of global and local motion processing in primate middle temporal visual area, Nature 357: 497–499.

    PubMed  CAS  Google Scholar 

  • Boussaoud, D., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque,/ Comp. Neurol. 296: 462–495.

    CAS  Google Scholar 

  • Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1992, Subcortical connections of visual areas MST and EST in macaques, Visual Neurosci. 9: 291–302.

    CAS  Google Scholar 

  • Bradley, A., Skottun, B. C., Ohzawa, 1., Sclar, G., and Freeman, R. D., 1987, Visual orientation and spatial frequency discrimination: A comparison of single cells and behavior, J. Neurophysiol. 57: 755–772.

    CAS  Google Scholar 

  • Bradley, D. C., Qian, N., and Andersen, R. A., 1995, Integration of motion and stereopsis in middle temporal cortical area of macaques, Nalure 373: 609–611.

    CAS  Google Scholar 

  • Bremmer, F., llg, U. J., Thiele, A., and Hoffmann, K.-P., 1996, Eye position effects in monkey cortex, I: Visual and pursuit related activity in extrastriate areas MT and MST,/ Neurophysiol.,in press.

    Google Scholar 

  • Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A., 1992, The analysis of visual motion: A comparison of neuronal and psychophysical performance, J. Neurosci. 12: 4745–4765.

    Google Scholar 

  • Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A., 1993, Responses of neurons in macaque MT to stochastic motion signals, Visual Neurosci. 10: 1157–1169.

    CAS  Google Scholar 

  • Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., and Movshon, J. A., 1996, A relationship between behavioral choice and the visual responses of neurons in macaque MT, Visual Neurosci. 13: 87–100.

    CAS  Google Scholar 

  • Buracas, G. T., and Albright, “F. D., 1994, ‘Elie role of MT neuron receptive field surrounds in computing object shape from velocity fields, Adv. Neural Information Processing Syst. 6: 969–976.

    Google Scholar 

  • Buracas, G. T., and Albright, “F. D., 1996, Contribution of area MT to perception of three-dimensional shape: A computational study, Vision Res. 36: 869–888.

    Google Scholar 

  • Cavanagh, P., and Mathers, G., 1989, Motion: The long and short of it, Spatial Vis. 4:103–129. Celebrini, S., and Newsome, W. T., 1994, Neuronal and psychophysical sensitivity to notion signals in extrastriate area MST of the macaque monkey,]. Neurosci. 14: 4109–4124.

    Google Scholar 

  • Celebrini, S., and Newsome, W. T., 1995, Microstimulation of extrastriate area MST influences performance on a direction discrimination task, J. Neurophysiol. 73: 437–448.

    PubMed  CAS  Google Scholar 

  • Cheng, K., Hasegawa, T., Saleem, K. S., and Tanaka, K., 1994, Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey,]. Neurophysiol. 71: 2269–2280.

    CAS  Google Scholar 

  • Cheng, K., Fujita, H., Kanno, I., Miura, S., and Tanaka, K., 1995, Human cortical regions activated by wide-field visual motion: An H2’50 PEE study,]. Neurophysiol. 74: 413–427.

    CAS  Google Scholar 

  • Chubb, C., and Sperling, G., 1988, Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception, ]. Opt. Soc. Am. A 5: 1986–2006.

    CAS  Google Scholar 

  • Ciochon, R. L., and Chiarelli, A. B., 1980, Evolutionary Biology of the New World Monkeys and Continental Drift, Plenum Press, New York.

    Google Scholar 

  • Clarke, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas,]. Comp. Neurol. 298: 188–214.

    CAS  Google Scholar 

  • Cowey, A., and Marcar, V. I.., 1992, The effect of removing superior temporal cortical motion areas in the macaque monkey: I. Motion discrimination using simple dots, Eur. J. Neurosci. 4: 1219–1227.

    PubMed  Google Scholar 

  • Cragg, B. G., 1969, The topography of the afferent projections in circumstriate visual cortex of the monkey studied by the Nauta method, Vision Res., 9: 733–747.

    PubMed  CAS  Google Scholar 

  • Dale, A. M., Ahlfors, S. P., Aronen, H. J., Belliveau, J. W., Huotilainen, M., Ilmoniemi, R. J., Kennedy, W. A., Korvenoja, A., Liu, A. K., Reppas, J. B., Rosen, B. R., Sereno, M. I., Simpson, G. V., Standertskjöld-Nordenstam, C.-G., Virtanen, J., and Tootell, R. B. H., 1995, Spatiotemporal imaging of coherent motion selective areas in human cortex, Soc. Neurosci. Ahstr. 21: 1275.

    Google Scholar 

  • Dean, A. F., 1981, The variability of discharge of simple cells in cat striate cortex, Exp. Brain Res. 44: 437–440.

    PubMed  CAS  Google Scholar 

  • Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., ‘Eadary, B., Woods, R., Mazziotta, J. C., and Fazio, F., 1994, Mapping motor representations with positron emission tomography, Nature 371: 600–602.

    CAS  Google Scholar 

  • Desimone, R., and Ungerlcider, L. G., 1986, Multiple visual areas in the caudal superior temporal sulcus of the macaque, J. Comp. Neural. 248: 164–189.

    CAS  Google Scholar 

  • DeYoe, E. G., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.

    PubMed  CAS  Google Scholar 

  • Dobkins, K. R., and Albright, T. 1)., 1994, What happens if it changes color when it moves? The nature of chromatic input to macaque visual area MT, /. Neurosci. 14: 4854–4870.

    CAS  Google Scholar 

  • Dobkins, K. R., and Albright, T. D., 1995, Behavioral and neural effects of chromatic isoluminance in the primate visual motion system, Visual Neurosci. 12: 321–332.

    CAS  Google Scholar 

  • Droulez, J., and Cornilleau-Pérès, V., 1990, Visual perception of surface curvature. The species variation and its physiological implications, Biol. Cybernet. 62: 211–224.

    CAS  Google Scholar 

  • Dubner, R., and Zeki, S. M., 1971, Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey, Brain Res. 35: 528–532.

    PubMed  CAS  Google Scholar 

  • Duffy, C. J., and Wurtz, R. H., 1991a, Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,/ Neurophysiol 65: 1329–1345.

    CAS  Google Scholar 

  • Duffy, C. J., and Wurtz, R. H., 1991b, Sensitivity of MST neurons to optic flow stimuli. II. Mecha- nisms of response selectivity revealed by small-field stimuli,/ Neurophysiol. 65: 1346–1359.

    CAS  Google Scholar 

  • Duffy, C. J., and Wurtz, R. H., 1995a, Response of monkey MST neurons to optic flow stimuli with shifted centers of motion,/ Neurosci. 15: 5192–5208.

    CAS  Google Scholar 

  • Duffy, C. J., and Wurtz, R. H., 1995b, Optic flow, posture, and the dorsal visual pathway, in: Perception, Memory, and Emotion: Frontier in Neuroscience (T. ( )no, B. L. McNaughton, S. Molotchnikoff, E. T. Rolls, and H. Nishijo, eds.), Pergamon Press, Oxford.

    Google Scholar 

  • Dupont, P., Orban, G. A., De Bruyn, B., Verbruggen, A., and Mortelmans, L., 1994, Many areas in the human brain respond to visual motion, J. Neurophysiol. 72: 1420–1424.

    PubMed  CAS  Google Scholar 

  • Dupont, P., Rosier, A., Vandenberghe, R., De Bruyn, B., Bormans, G., Mortelmans, L., and Orban, G. A., 1995, Regions in the human brain involved in the processing of motion discontinuities and of uniform motion: A PEE study, Soc. Neurosci. Abstr. 21: 663.

    Google Scholar 

  • Dürsteler, M. R., and Wurtz, R. H., 1988, Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST, J. Neurophysiol. 60: 940–965.

    PubMed  Google Scholar 

  • Dürsteler, M. R., Wurtz, R. H., and Newsome, W. T., 1987, Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey, J. Neurophysiol. 57: 1262–1287.

    PubMed  Google Scholar 

  • Erickson, R. G., and Dow, B. M., 1989, Foveal tracking cells in the superior temporal sulcus of the macaque monkey, Exp. Brain Res. 78: 113–131.

    PubMed  CAS  Google Scholar 

  • Erickson, R. G., and Thier, P., 1991, A neuronal correlate of spatial stability during periods of self-induced visual motion, Exp. Brain Res. 86: 608–616.

    PubMed  CAS  Google Scholar 

  • Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.

    PubMed  CAS  Google Scholar 

  • Ferrera, V. P., Nealey, T. A., and Maunsell, J. H. R., 1994a, Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways, J. Neurosci. 14: 2080–2088.

    PubMed  CAS  Google Scholar 

  • Ferrera, V. P., Rudolph, K. K., and Maunsell, J. H. R., 1994b, Responses of neurons in the parietal and temporal visual pathways during a motion task, J. Neurosci. 14: 6171–6186.

    PubMed  CAS  Google Scholar 

  • Friedman, H. R., and Goldman-Rakic, P. S., 1988, Activation of the hippocampus and dentate gyrus by working-memory: A 2-deoxyglucose study of behaving rhesus monkeys,/ Neurosci. 8:46934706.

    Google Scholar 

  • Fries, W., 1981, The projections from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey, Proc. R. Soc. Lond. B 213: 73–80.

    PubMed  CAS  Google Scholar 

  • Galletti, C., and Battaglini, I’. P., 1989, Gaze-dependent visual neurons in area V3A of monkey prestriate cortex, J. Neurosci. 9: 1 112–1 125.

    Google Scholar 

  • Gattass, R., and Gross, C. G., 1981, Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque,/ Neurophysiol. 46: 621–638.

    CAS  Google Scholar 

  • Gegenfurtner, K. R., Kiper, 1). C., Beusmans, J. M. H., Carandini, M., Zaidi, Q., and Movshon, J. A., 1994, Chromatic properties of neurons in macaque MT, Visual Neurosci. 11: 455–466.

    CAS  Google Scholar 

  • Girard, P., and Bullier, J., 1989, Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey, J. Neurophysiol. 62: 1287–1302.

    PubMed  CAS  Google Scholar 

  • Girard, 1’., Salin, P.-A., and Bullier, J., 1991, Visual activity in macaque area V4 depends on area 17 input, Neuroreport 2: 81–84.

    Google Scholar 

  • Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V 1, J. Neurophysiol. 67: 1437–1446.

    PubMed  CAS  Google Scholar 

  • Glickstein, M., Cohen, J. L., Dixon, B., Gibson, A., Hollins, M., Labossiere, E., and Robinson, F., 1980, Corticopontine visual projections in macaque monkeys, J. Comp. Neurol. 190: 209–229.

    PubMed  CAS  Google Scholar 

  • Graziano, M. S. A., Andersen, R. A., and Snowden, R. J., 1994, Tuning of MST neurons to spiral motions,/ Neurosci. 14: 54–67.

    CAS  Google Scholar 

  • Grasser, O.J., Pause, M., and Schreiter, U., 1990, Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): Visual and neck receptor responses, J. Physiol. (Lond.) 430: 559–583.

    Google Scholar 

  • Hawken, M. J., and Parker, A. J., 1990, Detection and discrimination mechanisms in the striate cortex of the old-world monkey, in: Vision: Coding and Efficiency (C. Blakemore, ed.), Cambridge University Press, Cambridge, pp. 103–1 16.

    Google Scholar 

  • Hawken, M. J., Parker, A. J., and Lund, J. S., 1988, Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the old world monkey, J. Neurosci. 8: 35413548.

    Google Scholar 

  • Hikosaka, K., Iwai, E., Saito, H., and Tanaka, K., 1988, Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey, J. Neurophysiol. 60: 1615–1637.

    PubMed  CAS  Google Scholar 

  • Hoffmann, K. P., Distler, C., and Erickson, R., 1991, Functional projections from striate cortex and superior temporal sulcus to the nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) of macaque monkeys, J. Comp. Neurol. 313: 707–724.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (Lond.) 195: 215–243.

    CAS  Google Scholar 

  • Kawano, K., Shidara, M., Wanatabe, Y., and Yamane, S., 1994, Neural activity in cortical area MST of alert monkey during ocular following responses, J. Neurophysiol. 71: 2305–2324.

    PubMed  CAS  Google Scholar 

  • Kennedy, W. A., Dale, A. M., Reppas, J. B., Liu, A. K., Belliveau, J. W., Rosen, B. R., and ‘Footcll, R. B. H., 1995, fMRI responses to 180 degree reversals of 3D optical flow fields reveal direction selectivity in human area MT, Soc. Neurosci. Abstr. 21: 663.

    Google Scholar 

  • Kim, J., and Wilson, H. R., 1993, Dependence of plaid motion coherence on component grating directions, Vision Res. 33: 2479–2489.

    PubMed  CAS  Google Scholar 

  • Koenderink, J. J., and van Doom, A. J., 1975, Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer, Optica Acta 22: 773–791.

    Google Scholar 

  • Komatsu, H., and Wurtz, R. H., 1988a, Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J. Neurophysiol. 60: 580–603.

    PubMed  CAS  Google Scholar 

  • Komatsu, H., and Wurtz, R. H., 1988b, Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation, J. Neurophysiol. 60: 621–644.

    PubMed  CAS  Google Scholar 

  • Komatsu, H., and Wurtz, R. H., 1989, Modulation of pursuit eye movements by stimulation of cortical areas MT and MST, J. Neurophysiol. 62: 31–47.

    PubMed  CAS  Google Scholar 

  • Kovacs, Gy., Vogels, R., and Orban, G. A., 1995, Selectivity of macaque inferior temporal neurons for partially occluded shapes, J. Neurosci. 15: 1984–1997.

    PubMed  CAS  Google Scholar 

  • Kreiter, A. K., and Singer, W., 1992, Oscillatory neuronal responses in the visual cortex of the awake macaque monkey, Eur. J. Neurosci. 4: 369–375.

    PubMed  Google Scholar 

  • Lagae, L., 1991, A neurophysiological study of optic flow analysis in the monkey brain, Ph.D. Thesis, Faculty of Medicine, KU Leuven.

    Google Scholar 

  • Lagae, L., Gulyas, B., Raiguel, S., and Orban, G. A., 1989, Laminar analysis of motion information processing in macaque V5, Brain Res. 496: 361–367.

    PubMed  CAS  Google Scholar 

  • Lagae, L., Raiguel, S., and Orban, G. A., 1993, Speed and direction selectivity of macaque middle temporal neurons, J. Neurophysiol. 69: 19–39.

    PubMed  CAS  Google Scholar 

  • Lagae, L., Maes, H., Raiguel, S., Xiao, D.-K., and Orban, G. A., 1994, Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST, J. Neurophysiol. 71: 1597–1626.

    PubMed  CAS  Google Scholar 

  • Lauwers, K., Saunders, R. C., De Bruyn, B., Vogels, R., Vandenbussche, E., and Orban, G. A., 1995, The effect of MT lesions on direction discrimination and on orientation discrimination of kinetic gratings in the macaque, Soc. Neurosci. Abstr. 21: 280.

    Google Scholar 

  • Lennie, P., 1980, Parallel visual pathways: A review, Vision Res. 20: 561–594.

    PubMed  CAS  Google Scholar 

  • Logothetis, N. K., and Charles, E. R., 1990, V4 responses to gratings defined by random dot motion, Invest. Ophthalmol. Vis. Sci. Suppl. 31: 444.

    Google Scholar 

  • Logothetis, N. K., and Schall, J. I)., 1989, Neuronal correlates of subjective visual perception, Science 245: 761–763.

    CAS  Google Scholar 

  • Lu, Z.-L., and Sperling, G., 1995, The functional architecture of human visual motion perception, Vision Res. 35: 2697–2722.

    PubMed  CAS  Google Scholar 

  • Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. M., and Fuchs, A. F., 1975, The origin of efferent pathways from the primary visual cortex (area 17) of the macaque monkey as shown by retrograde transport of horseradish peroxidase, J. Comp. Neurol. 164: 287–304.

    PubMed  CAS  Google Scholar 

  • Lund, J. S., Hendrickson, A. E., Ogren, M. P., and Tobin, E. A., 1981, Anatomical organization of primate visual cortex area VII, J. Comp. Neurol. 202: 19–45.

    PubMed  CAS  Google Scholar 

  • Marcar, V. L., and Cowey, A., 1992, The effect of removing superior temporal cortical notion areas in the macaque monkey: IL Motion discrimination using random dot displays, Eue. J. Neurosci. 4: 1228–1238.

    Google Scholar 

  • Marcar, V. L., Raiguel, S. E., Xiao, D., Maes, H., and Orban, G. A., 1992, Do cells in area V2 respond to the orientation of kinetic boundaries? Soc. Neurosci. Abstr. 18: 1275.

    Google Scholar 

  • Marcar, V. L., Xiao, D.-K., Raiguel, S.E., and Orban, G. A., 1994, Selectivity of area V2 of the macaque to kinetic-and other types of boundaries, Soc. Neurosci. Abstr. 20: 1740.

    Google Scholar 

  • Marcar, V. L., Xiao, D.-K., Raiguel, S. E., Maes, H., and Orban, G. A., 1995, Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey, J. Neurophysiol. 74: 1258–1270.

    PubMed  CAS  Google Scholar 

  • Maunsell, J. H. R., 1987, Physiological evidence for two visual subsystems, in: Matters of Intelligence ( L. Vainc, ed.), Keidel, Dordrecht, Holland, pp. 59–87.

    Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1983a, Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity of stimulus direction, speed, and orientation, J. Neurophysiol. 49: 1127–1147.

    PubMed  CAS  Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 19836, Functional properties of neurons in middle temporal visual area of the macaque monkey. 11. Binocular interactions and sensitivity to binocular disparity, J. Neurophysiol. 49: 1148–1167.

    Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1983e, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,/ Neurosci. 3: 2563 2586.

    Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1987, Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries, J. Comp. Neurol. 266: 535–555.

    PubMed  CAS  Google Scholar 

  • Maunsell, J. H. R., Nealey, T. A., and DePriest, D. D., 1990, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey, J. Neuro-sci. 10: 3323–3334.

    CAS  Google Scholar 

  • Maunsell, J. H. R., Sclar, G., Nealey, T. A., and DePriest, D. D., 1991, Extraretinal representations in area V4 in the macaque monkey, Visual Neurosci. 7: 561–573.

    CAS  Google Scholar 

  • Merigan, W. H., and Maunsell, J. H. R., 1993, How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16: 369–402.

    PubMed  CAS  Google Scholar 

  • Mesulam, M.-M., 1990, Large-scale neurocognitive networks and distributed processing for attention, language, and memory, Ann. Neurol. 28: 597–613.

    PubMed  CAS  Google Scholar 

  • Mikami, A., 1992, Spatiotemporal characteristics of direction-selective neurons in the middle temporal visual area of the macaque monkey, Exp. Brain Res. 90: 40–46.

    PubMed  CAS  Google Scholar 

  • Mikami, A., Newsome, W. T., and Wurtz, R. H., 1986a, Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,/ Neurophysiol. 55: 1308–1327.

    CAS  Google Scholar 

  • Mikami, A., Newsome, W. T., and Wurtz, R. H., 19866, Motion selectivity in macaque visual cortex. 11. Spatiotemporal range of directional interactions in MT and V1, J. Neurophysiol. 55: 1328 1339.

    Google Scholar 

  • Miles, F. A., Kawano, K., and Optical), L. M., 1986, Short-latency ocular following responses of monkey. I. Dependent on temporospatial properties of visual input, J. Neurophysiol. 56: 1321–1354.

    PubMed  CAS  Google Scholar 

  • Milner, A. D., Perrett, 1). 1., Johnston, R. S., Benson, P. J., Jordan, T. R., Heeley, D. W., Bettucci, D., Mortara, F., Mutani, R., ‘ferazzi, E., and Davidson, D. L. W., 1991, Perception and action in “visual form agnosia,” Brain 114: 405–428.

    Google Scholar 

  • Movshon, J. A., and Newsome, W. ‘l’., 1984, Functional characteristics of striate cortical neurons projecting to MT in the macaque, Soc. Neurosci. Abstr. 10: 933.

    Google Scholar 

  • Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T., 1985, The analysis of moving visual patterns, in: Pattern Recognition Mechanisms (R. Gattass., and C. Gross, eds.), Pontificia Academia Scientiarium, Vatican City, pp. 117–151.

    Google Scholar 

  • Movshon, J. A., Lisberger, S. G., and Krauzlis, R. J., 1990, Visual cortical signals supporting smooth pursuit eye movements, in: Cold Spring Harbor Symposia on Quantitative Biology, Volume 1.V, The Brain, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 707–716.

    Google Scholar 

  • Murasugi, C. M., Salzman, C. D., and Newsome,W. T., 1993, Microstimulation in visual area MT: Effects of varying pulse amplitude and frequency, J. Neurosci. 13: 1719–1729.

    PubMed  CAS  Google Scholar 

  • Nakayama, K., 1985, Biological image motion processing: A review, Vision Res. 25:625–660. Nealey, T. A., and Maunsell, J. H. R., 1994, Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex, J. Neurosci. 14: 2069–2079.

    Google Scholar 

  • Newsome, W. T., and Paré, E. B., 1988, A selective impairment of motion perception following lesions of the middle temporal visual area (MT), J. Neurosci. 8: 2201–2211.

    PubMed  CAS  Google Scholar 

  • Newsome, W. T., Wurtz, R. H., Dürsteler, M. R., and Mikami, A., 1985, Deficits in visual motion processing following ibonetic acid lesions of the middle temporal visual area of the macaque monkey, J. Neurosci. 5: 825–840.

    PubMed  CAS  Google Scholar 

  • Newsome, W. T., Wurtz, R. H., and Komatsu, H., 1988, Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs, J. Neurophysiol. 60: 604–620.

    PubMed  CAS  Google Scholar 

  • Newsome, W. T., Britten, K. H., and Movshon, J. A., 1989, Neuronal correlates of a perceptual decision, Nature 341: 52–54.

    PubMed  CAS  Google Scholar 

  • Olavarria, J. F., DeYoe,E. A., Knierim, J. J., Fox, J. M., and Van Essen, D. C., 1992, Neural responses to visual texture patterns in middle temporal area of the macaque monkey, J. Neurophysiol. 68: 164–181.

    CAS  Google Scholar 

  • Orban, G. A., 1986, Processing of moving images in the geniculocortical pathway, in: Visual Neuroscience ( J. D. Pettigrew, K. J. Sandersen, and W. R. Levick, eds.), Cambridge University Press, Cambridge, pp. 121–141.

    Google Scholar 

  • Orhan, G. A., 1991, Quantitative electrophysiology of visual cortical neurones, in: Vision and Visual Dysfunction, Volume 4, The Neural Basis of Visual Function (J. Cronly-Dillon, gen. ed., and A. G. Leventhal, ed.), Macmillan, London, pp. 173–222.

    Google Scholar 

  • Orban, G. A., 1992, The analysis of motion signals and the nature of processing in the primate visual system, in: Artificial and Biological Vision Systems ( G. A. Urban and H. H. Nagel, eds.), Springer-Verlag, Berlin, pp. 24–56.

    Google Scholar 

  • Orhan, G. A., 1994, Motion processing in monkey striate cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 413–441.

    Google Scholar 

  • Orhan, G. A., Kennedy, H., and Macs, H., 1981a, Response to movement of neurons in areas 17 and 18 of the cat: Velocity sensitivity,/ Neurophysiol. 45: 1043–1058.

    Google Scholar 

  • Orban, G. A., Kennedy, H., and Maes, H., 1981b, Response to movement of neurons in areas 17 and 18: Direction selectivity,/ Neurophysiol. 45: 1059–1073.

    CAS  Google Scholar 

  • Orban, G. A., Kennedy, H., and Bullier, J., 1986, Velocity sensitivity and direction selectivity of neurons in areas V 1 and V2 of the monkey: Influence of eccentricity, J. Neurophysiol. 56: 462–480.

    PubMed  CAS  Google Scholar 

  • Orban, G. A., Lagae, 1.., Verri, A., Raiguel, S., Xiao, D., Macs, H., and Torre, V., 1992, First-order analysis of optical flow in monkey brain, Proc. Nall. Acad. Sci. USA 89: 2595–2599.

    CAS  Google Scholar 

  • Orban, G. A., Lagae, L., Raiguel, S., Xiao D., and Maes, H., 1995a, The speed tuning of medial superior temporal (MST) cell responses to optic-flow components, Perception 24: 269–285.

    PubMed  CAS  Google Scholar 

  • Orban, G. A., Dupont, P., De Bruyn, B., Vogels, R., Vandenberghe, R., and Mortelmans, L., 1995b, A motion area in human visual cortex, Proc. Natl. Acad. Sci. USA 92: 993–997.

    PubMed  CAS  Google Scholar 

  • Orban, G. A., Saunders, R.C., and Vandenbussche, E., 1995e, Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey, Fur. J. Neurosci. 7: 2261–2276.

    CAS  Google Scholar 

  • Orhan, G. A., Xiao, D.-K., Marcar, V., and Raiguel, S., 1996, Selectivity of macaque MT neurons for direction of tilt in depth, Invest. Ophihalmol. Vis. Sci. 37: 485.

    Google Scholar 

  • Pasternak, ‘T., and Merigan, W. H., 1994, Motion perception following lesions of the superior temporal sulcus in the monkey, Cerebral Cortex 4: 247–259.

    CAS  Google Scholar 

  • Qian, N., and Andersen, R.A., 1995, V 1 responses to transparent and nontransparent motions, Exp. Brain Res. 103: 41–50.

    PubMed  CAS  Google Scholar 

  • Raiguel, S. E., Lagae, L., GulOs, B., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas V1, V2 and V5, Braire Res. 493: 155–159.

    CAS  Google Scholar 

  • Raiguel, S., Marcar, V., Xiao, D.-K., Macs, H., and Orban, G. A., 1993, Summation properties of macaque MT and MST neurons, Soc. Neurosci. Abstr. 19: 1283.

    Google Scholar 

  • Raiguel, S., Van I tulle, M., Xiao, 1).-K., Marcar, V. I.., and Orban, G. A., 1995, Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque, Fur. J. Neurosci. 7: 2064–2082.

    CAS  Google Scholar 

  • Rocha-Miranda, C., Bender, 1)., Gross, C. G., and Mishkin, Ni., 1975, Visual activation of neurons in inferotemporal cortex depends on striate cortex and the forebrain commissures, J. Neurophysiol. 38: 475–491.

    CAS  Google Scholar 

  • Rockland, K. S., 1989, Bistratilicd distribution of terminal arbors of individual axons projecting from area VI to middle temporal area (MT) in the macaque monkey, Visual Neurosci. 3: 155–170.

    CAS  Google Scholar 

  • Rockland, K. S., 1995, Morphology of individual axons projecting from area V2 to MT in the macaque, J. Conty. Neurot. 355: 15–26.

    CAS  Google Scholar 

  • Rockland, K. S., and Pandya, D. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain. Res. 179:3–20.

    Google Scholar 

  • Rodman, H. R., and Albright, T. D., 1987, Coding of visual stimulus velocity in area MT of the macaque, Vision Res. 27: 2035–2048.

    PubMed  CAS  Google Scholar 

  • Rodman, Fi. R., and Albright, T. D., 1989, Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (M1’), Exp. Brain Re.s. 75: 53–64.

    CAS  Google Scholar 

  • Rodman, H. R., Gross, C. G., and Albright, “F. D., 1989, Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.

    Google Scholar 

  • Rodman, H. R., Gross, C. G., and Albright, T. 1)., 1990, Afferent basis of visual response properties in area M’l of the macaque. II. Effects of superior colliculus removal, J. Neurosci. 10: 1154–1 164.

    Google Scholar 

  • Roy, J.-P, Komatsu, H., and Wurtz, R. H., 1992, Disparity sensitivity of neurons in monkey extrastriate area MST, J. Neurosci. 12: 2478–2492.

    PubMed  CAS  Google Scholar 

  • Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., and Iwai, E., 1986, Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey, J. Neurosci. 6: I45–157.

    Google Scholar 

  • Saito, H., Tanaka, K., Isom:, H., Yasuda, M., and Mikami, A., 1989, Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equi-luminous opponent color stimuli, Exp. Brain Res. 75: 1–14.

    Google Scholar 

  • Sakata, H., Shibutaui, H., Kawano, K., and Harrington, T. I.., 1985, Neural mechanisms of space vision in the parietal association cortex of the monkey, Vision Res. 25: 453–463.

    PubMed  CAS  Google Scholar 

  • Salzman, C. D., and Newsome, W. T., 1994, Neural mechanisms for forming a perceptual decision, Science 264: 231–237.

    PubMed  CAS  Google Scholar 

  • Salzman, C. D., Murasugi, C. M., Britten, K. H., and Newsome, W. T., 1992, Microstimulation in visual area M“1`: Effects on direction discrimination performance, J. Neurosci. 12: 2331–2355.

    PubMed  CAS  Google Scholar 

  • Shry, Gy., Vogels, R., and Urban, G. A., 1993, Cue-invariant shape selectivity of macaque inferior temporal neurons, Science 260: 995–997.

    Google Scholar 

  • Síary, Gy., Vogels, R., Kovtics, Gy., and Urban, G. A., 1995, Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings, J. Neurophysiol. 73: 1341–1354.

    Google Scholar 

  • Schall, J. D, Morel, A., King, D. J., and Bullier, J., 1995, Topography of visual cortex connections with frontal eye field in macaque: Convergence and segregation of processing streams, J. Neurosci. 15: 4464–4487.

    PubMed  CAS  Google Scholar 

  • Schiller, P. II., 1993, The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey, Visual Neurosci. 10: 717–746.

    CAS  Google Scholar 

  • Schiller, P. H., and Lee, K., 1994, The effects of lateral geniculate nucleus area V4, and middle temporal (MT) lesions on visually guided eye movements, Visual Neurosci. 11: 229–241.

    CAS  Google Scholar 

  • Schiller, P. H., and Malpeli, J. G., 1977, The effect of striate cortex coding on area 18 cells in the monkey, Brain Res. 126: 366–369.

    PubMed  CAS  Google Scholar 

  • Sclar, G., Maunsell, J. II. R., and Lennie, P., 1990, Coding of image contrast in central visual pathways of the macaque monkey, Vision Res. 30: 1–10.

    PubMed  CAS  Google Scholar 

  • Sereno, M. I., and Allman, J. M., 1991, Cortical visual areas in mammals, in: The Neural Basis of Visual Function ( A. G. Leventhal, ed.), Macmillan, London, pp. 160–172.

    Google Scholar 

  • Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and Tootcl, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.

    PubMed  CAS  Google Scholar 

  • Shadlen, M. N., Britten, K. H., Newsome, W. T., and Movshon, J. A., 1996, A computational analysis of the relationship between neuronal and behavioral responses to visual motion, J. Neurosci. 16: 1486–1510.

    PubMed  CAS  Google Scholar 

  • Shipp, S., and Zeki, S. M., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.

    PubMed  CAS  Google Scholar 

  • Shipp, S., and Zeki, S., 1989a, The organization of connections between areas V5 and VI in macaque monkey visual cortex, Eur. f. Neurosci. 1: 309–332.

    CAS  Google Scholar 

  • Shipp, S., and Zeki, S., 1989b, “File organization of connections between areas V5 and V2 in macaque monkey visual cortex, Eur. J. Neurosci. 1: 333–354.

    Google Scholar 

  • Siegle, R. M., and Andersen, R. A., 1986, Motion perceptual deficits following ibotenic acid lesions of the middle temporal area (MT) in the behaving rhesus monkey, Soc. Neurosci. Abstr. 12: 1183.

    Google Scholar 

  • Snowden, R. J., Treue, S., Erickson, R. G., and Andersen, R. A., 1991, The response of area MT and V1 neurons to transparent motion, /. Neurosci. 11: 2768–2785.

    CAS  Google Scholar 

  • Snowden, R. J., Treue, S., and Andersen, R. A., 1992, The response of neurons in areas VI and M’l’ of the alert rhesus monkey to moving random dot patterns, Exp. Brain Res. 88: 389–400.

    PubMed  CAS  Google Scholar 

  • Spatz, W. B., and “Tigges, J., 1972, Experimental anatomical studies on the ”middle temporal visual area (MT)“ in primates. I. Efferent cortico-cortical connections in marmoset Callitlarix jacchus, J. Comp. Neurol. 146:451–464.

    Google Scholar 

  • Standage, G. P., and Benevento, L. A., 1983, ‘the organization of connections between the pulvinar and visual area MT in the macaque monkey, Brain Rec. 262: 288–294.

    Google Scholar 

  • Stoner, G. R., and Albright, T. D., 1992, Neural correlates of perceptual motion coherence, Nature 358: 412–414.

    PubMed  CAS  Google Scholar 

  • Stoner, G. R., Albright, T. D., and Ramachandran, V. S., 1990, Transparency and coherence in human motion perception, Nature 344: 153–155

    PubMed  CAS  Google Scholar 

  • Sugita, Y., and Tanaka, K., 1991, Occlusion-related cue used for analysis of motion in the primate visual cortex, NeuroReport 2: 751–754.

    PubMed  CAS  Google Scholar 

  • Takechi, H., Onoe, H., Imamura, K., Onoe, K., Kakiuchi, “T., Nishiyama, S., Yoshikawa, E., Mori, S., Kosugi, T., Okada, H., Tsukada, H., and Watanabe, Y., 1994, Brain activation study by use of positron emission tomography in unanesthetized monkeys, Neurosci. Lett. 182: 279–282.

    Google Scholar 

  • Talairach, J., and lirurnoux, P., 1988, Co-Planar Slereotaxic Atlas of the Human Brain, Thieme, New York, p. 122.

    Google Scholar 

  • Tanaka, K., and Saito, H., 1989, Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of’ the medial superior temporal area of the macaque monkey, J. Neuraphysiol. 62: 626–641.

    CAS  Google Scholar 

  • Tanaka, K., Ilikosaka, K., Saito, H., Yukie, M., Fukada, Y., and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey, J. Neurosci. 6: 134–144.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Fukada, Y., and Saito, H., 1989, Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey,/ Neuropltysiol. 62: 642–656.

    CAS  Google Scholar 

  • Tanaka, K., Sugita, Y., Moriya, M., and Saito, fl., 1993, Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex, J. Neuroplrysiol. 69: 128–142.

    CAS  Google Scholar 

  • Thier, P., and Erickson, R. G., 1992, Responses of visual-tracking neurons from cortical area MST-L to visual, eye and head motion, Eur. J. Neurosci. 4: 539–553.

    PubMed  Google Scholar 

  • Tolhurst, D. J., Movshon, J. A., and Dean, A. F., 1983, The statistical reliability of signals in single neurons in cat and monkey visual cortex, Vision Res. 23: 775–785.

    PubMed  CAS  Google Scholar 

  • Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for MT/V5 and other cortical visual areas in man, Cerebral Cortex 5: 39–55.

    PubMed  CAS  Google Scholar 

  • Tootell, R. B. H., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. 1., Malach, R., Brady, T. J., and Rosen, B. R., 1995a, Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging, Nature 375: 139–141.

    CAS  Google Scholar 

  • Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. “l’., Brady, T. J., Rosen, B. R., and Belliveau, J. W., 1995b, Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging, J. Neurosci. 15: 3215–3230.

    Google Scholar 

  • Tootell, R. B. H, Reppas, J. R., and Rosen, B. R., 1995c, Functional analysis of human visual cortical areas V3, VP and V3A using magnetic resonance imaging, Human Brain Mapping Suppl. 1: 62.

    Google Scholar 

  • Treue, S., and Andersen, R. A., 1993, Tuning of MT cells to velocity gradients, Invest. Ophthalmol. Vis. Sci. Suppl. 34: 813.

    Google Scholar 

  • Ungerleider, I.. G., and Desimone, R., I 986a, Projections to the superior temporal sulcus from the central and peripheral field representations of V I and V2, J. Comp. Neurol. 248: 147–163.

    Google Scholar 

  • Ungerleider, L. G., and Desimone, R., I986b, Cortical connections of visual area MT in the macaque, Comp. Neurol. 248: 190–222.

    Google Scholar 

  • Ungerleider, I.. G., and Mishkin, M., 1979, The striate projection zone in the superior temporal sulcus of Maraca mulatla: Location and topographic Organization,/ Comp. Neurol. 188: 347–366.

    Google Scholar 

  • Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: The Analysis of Visual Behavior (D. J. Ingle, R. J. W. Mansfield, and M. S. Goodale, eds.), MIT Press, Cambridge, MA, PP. 549–586.

    Google Scholar 

  • Ungerleider, I.. G., Desimone, R., Galkin, T. W., and Mishkin, M., 1984, Subcortical projections of area MT in the macaque, J. Comp. Neurol. 223: 368–386.

    PubMed  CAS  Google Scholar 

  • Vanduffel, W., Vandeubusschc, E., Singer, W., and Orban, G. A., 1993, Bar orientation discrimination in the cat: A 2-deoxyglucose study, Soc. Neurosci. Abstr. 19: 772.

    Google Scholar 

  • Vanduffel, W., “Footell, R. B. H., and Orban, G. A., 1995, Metabolic mapping of an orientation discrimination task in the macaque using the double-label deoxyglucose technique, Soc. Neurosci. Abstr. 21: 771.

    Google Scholar 

  • Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. L., 1981, “Fhe middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization, J. Comp. Neurol. 199: 293–326.

    Google Scholar 

  • Van Essen, D. C., Anderson, C. H., and Eckman, D.J., 1992, Information processing in the primate visual system: An integrated systems perspective, Science 255: 419–423.

    Google Scholar 

  • Vogels, R., and Orban, G. A., 1990, How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey, J. Neurosci. 10: 3543–3558.

    PubMed  CAS  Google Scholar 

  • Vogels, R., and Orban, G. A., 1994, Activity of inferior temporal neurons during orientation discrimination with successively presented gratings, J. Neurophysiol. 71: 1428–1451.

    PubMed  CAS  Google Scholar 

  • Vogels, R., Splicers, W., and Orban, G. A., 1989, The response variability of striate cortical neurons in the behaving monkey, Exp. Brain Res. 77: 432–436.

    PubMed  CAS  Google Scholar 

  • Von Monakow, C., 1914, Die Lokalisation im Grosshirn und der Abbau der Funktion Durcit Kortikale Herde, Bergmann, Wiesbaden, Germany.

    Google Scholar 

  • Watson, J. D. G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., Shipp, S., and Zeki, S., 1993, Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging, Cerebral Cortex 3: 79–94.

    PubMed  CAS  Google Scholar 

  • Weller, R. E., and Kaas, J. H., 1983, Retinotopic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys, J. Comp. Neurol. 220: 253–279.

    PubMed  CAS  Google Scholar 

  • Wurtz, R. H., Yamasaki, D. S., Duffy, D. J., and Roy, J.-P., 1990, Functional specialization for visual motion processing in primate cerebral cortex, in: Cold Spring Harbor Symposia on Quantitative Biology, Volume I.V, The Brain, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 717–727.

    Google Scholar 

  • Xiao, D.-K., Marcar, V., Raiguel, S., Macs, H., and Orban, G. A., 1993, Influence of stimulus duration on speed tuning of MT neurons, S’oc. Neurosci. Abstr. 19: 769.

    Google Scholar 

  • Xiao, D.-K., Marcar, V. I.., Raiguel, S. E., and Orban, G. A., 1995a, Spatial heterogeneity in the surround of area M“I’ for motion vectors differing in direction or speed from the CRF, Soc. Neurosci. Abstr. 21: 663.

    Google Scholar 

  • Xiao, D.-K., Raiguel, S., Marcar, V., Koenderink, J., and Orban, G. A., 1995h, Spatial heterogeneity of inhibitory surrounds in visual area MT, Proc. Natl. Acad. Sci. USA 92: 11303–11306.

    PubMed  CAS  Google Scholar 

  • Xiao, D.-K., Marcar, V. L., Raiguel, S. E., and Orban, G. A., 1997, Selectivity of macaque MT/V5 neurons for surface orientation in depth, specified by motion, Fur. J. Neurosci. 9: 956–964.

    CAS  Google Scholar 

  • Yamasaki, D. S., and Wurtz, R. H., 1991, Recovery of function after lesions in the superior temporal sulcus in the monkey, J. Neurophy.siol. 66: 651–673.

    CAS  Google Scholar 

  • Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Brain Res. 14: 271–291.

    CAS  Google Scholar 

  • Zeki, S. M., 1971, Cortical projections from two prestriate areas in the monkey, Brain Res. 34: 19–35.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1974, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,/. Physiol. (Lund.) 236: 549–573.

    CAS  Google Scholar 

  • Zeki, S. M., 1978, Uniformity and diversity of structure and function in rhesus monkey prestriate visual Cortex,/ Physiol. (Lund.) 277: 273–290.

    CAS  Google Scholar 

  • Zeki, S. M., 1980, The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex, Proc. R. Soc. Load. B 207: 239–248.

    CAS  Google Scholar 

  • Zeki, S., Watson, J. D. C., 1.ueck, C. J., Friston, K.J., Kennard, C., and Frackowiak, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex, J. Neurosci. 11: 641–649.

    Google Scholar 

  • Zohary, E., Celebrini, S., Britten, K. H., and Newsome, W. T., 1994a, Neuronal plasticity that underlies improvement in perceptual performance, Science 263: 1289–1292.

    PubMed  CAS  Google Scholar 

  • Zohary, E., Shadlen, M. N., and Newsome, W. T., 1994h, Correlated neuronal discharge rate and its implications for psychophysical performance, Nature 370: 140–143.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Orban, G.A. (1997). Visual Processing in Macaque Area MT/V5 and Its Satellites (MSTd and MSTv). In: Rockland, K.S., Kaas, J.H., Peters, A. (eds) Extrastriate Cortex in Primates. Cerebral Cortex, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9625-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9625-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9627-8

  • Online ISBN: 978-1-4757-9625-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics