Skip to main content

The Basic Physics of Water Penetration into Hot Rock

  • Chapter
Hydrothermal Processes at Seafloor Spreading Centers

Part of the book series: NATO Conference Series ((MARS,volume 12))

Abstract

There are a number of rival ideas about how heat is transferred to the hot fluids of major geothermal areas. One of these is the theory of water penetration into hot rock, where thermal shrinkage of the rocks permits them to crack on a relatively small scale and then transport heat away from the hot boundary thus formed. The theory has the advantage of requiring a relatively small area of contact between water and hot rock to produce the high hermal outputs of large geothermal areas: of the order of 1 km2. This is because the thermal boundary layer is established by the advance of a cracking front into the rock itself, and is a function of front velocity rather than preexisting geological structure. A critical review of the physics of the process shows that the weakest areas of the theory are in the understanding of the mechanics of the cracking process and in the structure of the porous-medium convection that discharges the heat. The problems in both these areas stem from a basic lack of knowledge of the physics, and not from weaknesses in the theory itself. The one-dimensionality of the treatment is not a serious limitation because the predicted crack spacing, of the order of a meter, is much smaller than the kilometer scale of three-dimensionality in the geometry.

The theory predicts correctly the order-of-magnitude of the hot water temperature even when data not appropriate to mafic crustal rocks has to be used. Examination of exposed regions of ophiolite suites that should have undergone the cracking process is at too primitive a stage to confirm or disprove the theory. A partially-controlled experiment where large volumes of water were pumped onto an advancing lava flow confirms that the cracking process does take place, and the numbers are in general agreement with the theory in spite of conditions being substantially different from those treated in the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Björnsson, H., Björnsson, S., and Sigurgeirsson, Th., 1982, Penetration of water into hot rock boundaries of magma at Grimsvötn, Nature, 295: 580–581

    Article  Google Scholar 

  • Bodvarsson, G., and Lowell, R. P., 1972, Ocean floor heat flow and the circulation of interstitial waters, J. Geophys. Res., 77: 4472–4475.

    Article  Google Scholar 

  • Bodvarsson, G., 1975, Thermoelastic phenomena in geothermal systems, Proc. 2nd United Nations Symposium on Development and Use of Geothermal Resources, 2: 903–907.

    Google Scholar 

  • Bolton, R. S., 1975, Recent developments and future prospects for geothermal energy in New Zealand, Proc. 2nd United Nations Symposium on Development and Use of Geothermal Resources, 1: 37–42.

    Google Scholar 

  • Bories, S., 1970, Sur les mécanismes fondamenteaux de la convection naturelle en milieu poreux, Rev. Gen. Therm., 108: 1377–1401.

    Google Scholar 

  • Buretta, R. J., and Berman, A. S., 1976, Convective heat transfer in a liquid-saturated porous layer, J. Applied Mech., 43: 249–253.

    Article  CAS  Google Scholar 

  • Busse, F., and Joseph, D. D., 1972, Bounds for heat transport in a porous layer, J. Fluid Mech., 54: 521–543.

    Article  Google Scholar 

  • Combarnous, M., 1970, Convection naturelle et convection mixte dans une couche poreuse horizontale, Rev. Gen. Therm., 108: 1355–1375.

    Google Scholar 

  • Combarnous, M., and Bories, S., 1975, Hydrothermal convection in saturated porous media, Adv. Hydrosci., 10: 231–307.

    Google Scholar 

  • Elder, J. W., 1965, Physical processes in geothermal areas, Am. Geophys. Union Monogr., 8: 211–239.

    Google Scholar 

  • Elder, J. W., 1967, Steady free convection in a porous medium heated from below, J. Fluid Mech., 71: 379–389.

    Google Scholar 

  • Ellis, A. J., and Mahon, W. A. J., 1977, “Chemistry and Geothermal Systems,” Academic Press, N.Y., 392 pp., Chapter 4.

    Google Scholar 

  • Harlow, F. H., and Pracht, W. E., 1972, A theoretical study of geothermal energy extraction, J. Geophys. Res., 77: 7038–7048.

    Article  Google Scholar 

  • Hartline, B. K., 1978, Topographic forcing of thermal convection in a Hele-Shaw cell model of a porous medium, Ph.D. Thesis, University of Washington, Seattle, WA.

    Google Scholar 

  • Hartline, B. K., and Lister, C. R. B., 1977, Thermal convection in a Hele-Shaw cell, J. Fluid Mech., 79: 379–389.

    Article  Google Scholar 

  • Hartline, B. K., and Lister, C. R. B., 1981, Topographic forcing of supercritical convection in a porous medium such as the oceanic crust, Earth Planet. Sci. Lett., 55: 75–86.

    Article  Google Scholar 

  • Irwin, G. R., 1958, Fracture, in: “Handbuch der Physik”, S. Flugge, ed., 6: 551–590, Springer, Berlin.

    Google Scholar 

  • Katsaros, K. B., Liu, W. T., Businger, J. A., and Tillman, J. E., 1977, Heat transport and thermal structure in the interfacial bounday layer measured in an open tank of water in turbulent free convection, J. Fluid Mech., 83: 311–335.

    Article  Google Scholar 

  • Lachenbruch, A. H., 1961, Depth and spacing of tension cracks, J. Geophys. Res., 66: 4273–4292.

    Article  Google Scholar 

  • Lachenbruch, A. H., 1962, Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost, Geol. Soc. Amer. Spec. Papers, 70: 69 pp.

    Google Scholar 

  • Lapwood, E. R., 1948, Convection of a fluid in a porous medium, Proc. Cambridge Phil. Soc., 44: 508–521.

    Article  Google Scholar 

  • Lister, C. R. B., 1974, On the penetration of water into hot rock, Geophys. J. R. astr. Soc., 39: 465–509.

    Article  Google Scholar 

  • Lister, C. R. B., 1975, Qualitative theory on the deep end of geothermal systems, Proc. 2nd United Nations Symposium on Development and Use of Geothermal Resources, 1: 459–463.

    Google Scholar 

  • Lister, C. R. B., 1980, Heat flow and hydrothermal circulation, Ann. Rev. Earth Planet. Sci., 8: 95–117.

    Article  Google Scholar 

  • Lister, C. R. B., 1981, Rock and water histories during suboceanic hydrothermal events, Oceanologica Acta, SP, Proc. 26th International Geological Congress, Geology of Oceans Symposium, pp. 41–46.

    Google Scholar 

  • Lister, C. R. B., 1982, “Active” and “passive” hydrothermal systems in the oceanic crust: prediced physical conditions, in: “The Dynamic Environment of the Ocean Floor,” K. A. Fanning and F. T. Manheim, eds., D. C. Heath, Lexington, Mass., pp. 441–470.

    Google Scholar 

  • Lowell, R. P., 1980, Topographically driven subcritical hydrothermal convection in the oceanic crust, Earth Planet. Sci. Lett., 49: 21–28.

    Article  Google Scholar 

  • Malahoff, A., 1982, Polymetallic sulphides from the oceans to the continents, Sea Tech., 23 (1): 51–55.

    Google Scholar 

  • Martin, R. J., 1972, Time-dependent crack growth in quartz and its application to the creep of rocks, J. Geophys. Res., 77: 1406–1419.

    Article  Google Scholar 

  • Mottl, M. J., and Seyfried, W. E., 1980, Sub-seafloor hydrothermal systems: rock versus seawater dominated, in: “Seafloor Spreading Centers: Hydrothermal Systems,” P. A. Rona and R. P. Lowell, eds., “Benchmark Papers in Geology,” 56:66–82, Dowden, Hutchinson and Ross, Stroudsburg, Penn.

    Google Scholar 

  • Norton, D., and Knight, J., 1977, Transport phenomena in hydrothermal systems: cooling plutons, Amer. J. Sci., 277: 937–981.

    Article  Google Scholar 

  • Ree, F. H., Ree, T., and Eyring, H., 1960, Relaxation theory of creep of metals, Amer. Soc. Civ. Eng., Eng. Mech. Div. J., 86, EM-1: 41–59.

    Google Scholar 

  • Ribando, R. J., Torrance, K. E., and Turcotte, D. L., 1976, Numerical models for hydrothermal circulation in the oceanic crust, J. Geophys. Res., 81: 3007–3012.

    Article  Google Scholar 

  • Scheidegger, A. E., 1974, “The Physics of Flow Through Porous Media,” Third Edition, Univ. of Toronto Press, Toronto, pp. 135–144.

    Google Scholar 

  • Schneider, K. J., 1963, Investigation of the influence of free thermal convection on heat transfer through granular material, Proc. 11th Int. Cong. Refrig., Munich, Paper 114: 247–254.

    Google Scholar 

  • Spiess, F. N., Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Hayman, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S., Normark, W., Orcutt, J., and Rangin, C., 1980, East Pacific Rise: hot springs and geophysical experiments, Science, 207: 1421–1433.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lister, C.R.B. (1983). The Basic Physics of Water Penetration into Hot Rock. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds) Hydrothermal Processes at Seafloor Spreading Centers. NATO Conference Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0402-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0402-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0404-1

  • Online ISBN: 978-1-4899-0402-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics