Skip to main content

Neurophysiology of the Striate Cortex

  • Chapter
Human and Machine Vision
  • 132 Accesses

Abstract

Recent findings on the structural and functional properties of the striate cortex of cats and primates are briefly reviewed. In particular these findings show that: i) different stimulus attributes are processed at least partially in parallel, ii) the responses of single neurones to a given visual stimulus are context-dependent, iii) some degree of neural plasticity is present even in the adult visual cortex, iv) multiplexed temporal codes may be used by visual neurons to transmit multiple messages about different stimulus qualities. Some properties of extrastriate visual areas are suggestive of further stages of visual processing that may be relevant for pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Hubel and T. Wiesel, Receptive fields and functional architecture of monkey striate cortex, J. Physiol (Lond), Vol.195, pp. 215–243 (1968).

    CAS  Google Scholar 

  2. L. Maffei, Spatial frequency channels, in Handbook of Sensory Physiology, Vol.VIII: Perception, R. Held, H.W. Leibowitz, and H.L. Teuber eds., Springer-Verlag, Berlin, D, pp. 39–63 (1978).

    Google Scholar 

  3. D.H. Hubel and M.S. Livingstone, Segregation of form, colour and stereopsis in primate area 18, J. Neurosci., Vol.11, pp. 3378–3415 (1987).

    Google Scholar 

  4. M.S. Livingstone and D.H. Hubel, Psychophysical evidence for separate channels for the perception of form, colour, movement and depth, J. Neurosci., Vol.11, pp. 3416–3468 (1987).

    Google Scholar 

  5. E.A. DeYoe and D.C. Van Essen, Concurrent processing streams in monkey visual cortex, Trends Neurosci., Vol.11, pp. 219–226 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. M. Mishkin, L.G. Ungeleider, and K.A. Macko, Object vision and spatial vision. Two cortical pathways, Trends Neurosci., Vol.6, pp. 414–417 (1983).

    Article  Google Scholar 

  7. D.C. Van Essen, C.H. Anderson, and DJ. Felleman, Information processing in the primate visual system: an integrated system perspective, Science, Vol.255, pp. 419–423 (1992).

    Article  PubMed  Google Scholar 

  8. D.H. Hubel and T.N. Wiesel, Functional architecture of macaque monkey visual cortex, Proc. Roy. Soc. Lond. B, Vol.198, pp. 1–59 (1977).

    Article  CAS  Google Scholar 

  9. M.S. Livingstone and D.H. Hubel, Anatomy and physiology of a colour system in the primate visual cortex, J. Neurosci., Vol.4, pp. 309–356 (1984).

    PubMed  CAS  Google Scholar 

  10. G.G. Blasdel, Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex, J. Neurosci., Vol.12, pp. 3115–3138 (1992).

    PubMed  CAS  Google Scholar 

  11. G.G. Blasdel, Orientation selectivity, preference and continuity in monkey striate cortex, J. Neurosci., Vol. 12, pp. 3139–3161 (1992).

    PubMed  CAS  Google Scholar 

  12. C.D. Gilbert and T.N. Wiesel, Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex, J. Neurosci., Vol.9, pp. 2432–2442 (1989).

    PubMed  CAS  Google Scholar 

  13. C.D. Gilbert, Horizontal integration and cortical dynamics, Neuron, Vol.9, pp. 1–13 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. L. Maffei and A. Fiorentini, The unresponsive regions of visual cortical receptive fields, Vision Res., Vol. 16, pp. 1131–1139(1976).

    Article  PubMed  CAS  Google Scholar 

  15. C.D. Gilbert and T.N. Wiesel, The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat, Vision Res., Vol.30, pp. 1689–1701 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. M.C. Morrone, D.C. Burr, and L. Maffei, Functional implications of cross-orientation inhibition of cortical visual cells. I: Neurophysiological evidence, Proc. R. Soc. Lond. B, Vol.216, pp. 335–354 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. D.C. Van Essen, E.A. De Yoe, J.F. Olivarria, J.J. Knierim, J.M. Fox, D. Sagi, and B. Julesz, Neural responses to static and moving texture patterns in visual cortex of the macaque monkey, in Neural Mechanisms of Visual Perception, D Man-Kit Lam and CD. Gilbert eds., PPC-GPC, Houston, TX, pp. 137–154 (1989).

    Google Scholar 

  18. D.Y. Ts’o, C.D. Gilbert, and T.N. Wiesel, Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J. Neurosci., Vol.8, pp. 1160–1170 (1986).

    Google Scholar 

  19. D.Y. Ts’o and C.D. Gilbert, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosa, Vol.8, pp. 1712–1727 (1988).

    CAS  Google Scholar 

  20. C.M. Gray and W. Singer, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci., USA, Vol.86, pp. 1698–1702 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. C.M. Gray, P. Koenig, A.K. Engel, and W. Singer, Oscillatory responses in cat visual cortex exibit intercolumnar synchronization which reflects global stimulus properties, Nature, Vol.338, pp. 334–337 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. C.M. Gray, A.K. Engel, P. Koenig, and W. Singer, Synchronous neuronal oscillations in cat visual cortex: functional implications, in Representations in Vision, A. Gorea ed., Univ. Press, Cambridge (1990).

    Google Scholar 

  23. A.B. Bonds, R.K. Snider, J.F. Kabara, P. Bush, and T.J. Seinowski, On the origin of oscillations in cells of the cat striate cortex, Inv. Ophth. Vis. Sci., Vol.34, p. 909 (1993).

    Google Scholar 

  24. U. Ribary, R. Llinas, F. Lado, A. Mogilner, A. Ioannides, R. Jagow, M. Joliot, and J. Volkmann, Origin and characteristics of coherent thalamo-cortical 40-Hz oscillations in the human brain, Soc. Neurosci. Abs., Vol.18, p. 1420 (1992).

    Google Scholar 

  25. C.D. Gilbert and T.N. Wiesel, Receptive field dynamics in adult primary visual cortex, Nature, Vol.356, pp. 150–152 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. G.H. Recanzone, M.M. Merzenich, and W.M. Jenkins, Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a, J. Neurophysiol, Vol.67, pp. 1057–1070 (1992).

    PubMed  CAS  Google Scholar 

  27. A. Fiorentini and N. Berardi, Limits in pattern discrimination: central and peripheral factors, in Vision and Visual Dysfunction, JJ. Kulikowsky, V. Valsh and J.J. Murray eds., MacMillan, London, UK, Vol.5 (1991).

    Google Scholar 

  28. P. Schiller, The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey, Visual Neurosci., Vol.10, pp. 717–746 (1993).

    Article  CAS  Google Scholar 

  29. P. Buisseret and L. Maffei, Extraocular proprioceptive projections to the visual cortex, Exp. Brain Res., Vol.28, pp. 421–425 (1977).

    PubMed  CAS  Google Scholar 

  30. A. Fiorentini, M.C Cenni, and L. Maffei, Impairment of steroacuity in cats with oculomotor proprioceptive deafferentation, Exp. Brain Res., Vol.63, pp. 364–368 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. Y. Trotter, S. Celebrini, B. Sticanne, S. Thorpe, and M. Imbert, Modulation of neural steroscopic processing in Primate area V1 by the viewing distance, Science, Vol.257, pp. 1279–1281 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. J. Moran and R. Desiinone, Selective attention gates visual processing in the extrastriate cortex, Science, Vol.229, pp. 782–784 (1985).

    Article  PubMed  CAS  Google Scholar 

  33. A. Cattaneo, L. Maffei, and M.C. Morrone, Patterns in the discharge of simple and complex visual cortical cells, Proc. R. Soc. Lond. B, Vol.212, pp. 279–297 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. J.W. McClurkin, L.M. Optican, B.J. Richmond, and T.J. Gawne, Concurrent processing and complexity of temporally encoded neuronal messages in visual perception, Science, Vol.253, pp. 675–677 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fiorentini, A. (1994). Neurophysiology of the Striate Cortex. In: Cantoni, V. (eds) Human and Machine Vision. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1004-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1004-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1006-6

  • Online ISBN: 978-1-4899-1004-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics