Skip to main content

Tomography of Spin States and Classical Formulation of Quantum Mechanics

  • Chapter
Symmetries in Science X

Abstract

Quantum mechanics is based on description of a state of a physical system in terms of wave function [1] (pure states) and of density matrix [2, 3] (mixed states). The attempts to find a classical-like interpretation of quantum mechanics [4, 5] and related constructions of quasidistribution functions in phase space of the system [6–9] give the idea that for quantum mechanics it is impossible to describe the state of the quantum system in terms of measurable positive probability analogously to the case of classical statistical mechanics, where the state of the system is described by the positive probability distribution due to presence of classical fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Schrödinger, Ann. Phys. (Leipzig), 79, 489 (1926).

    MATH  Google Scholar 

  2. L. D. Landau, Z. Physik, 45,430 (1927).

    Article  MATH  Google Scholar 

  3. J. von Neumann, Mathematische Grundlagen der Quantenmechanik(Springer, Berlin, 1932).

    MATH  Google Scholar 

  4. L. De Broglie, Compt. Rend., 183,447 (1926); 184,273 (1927); 185,380 (1927).

    MATH  Google Scholar 

  5. D. Bohm, Phys. Rev., 85,166; 180 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Wigner, Phys. Rev., 40, 749 (1932).

    Article  Google Scholar 

  7. K. Husimi, Proc. Phys. Math. Soc. Jpn., 23,264 (1940).

    Google Scholar 

  8. R. J. Glauber, Phys. Rev. Lett., 10, 84 (1963).

    Article  MathSciNet  Google Scholar 

  9. E. C. G. Sudarshan, Phys. Rev. Lett., 10, 277 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A, 213,1 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Mancini, V. I. Man’ko, and P. Tombesi, “Classical-like description of quantum dynamics by means of symplectic tomography,” Los Alamos Report No. quant-ph/9609026; Found. Phys. (1997, to appear).

    Google Scholar 

  12. V. I. Man’ko, “Quantum mechanics and classical probability theory,” in: Symmetries in Science IX, Eds.: B. Gruber and M. Ramek (Plenum Press, New York, 1997), p. 215.

    Google Scholar 

  13. V. I. Man’ko, “Optical symplectic tomography and classical probability instead of wave function in quantum mechanics,” in: GROUP21. Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras, Eds.: H.-D. Doebner, W. Scherer, and C. Schultz (World Scientific, Singapore, 1997), Vol. 2, p. 764; “Energy levels of harmonic oscillator in classical-like formulation of quantum mechanics,” talk at the Second Sakharov Conference (Moscow, May 1996), (to appear in the Proceedings of the Conference, World Scientific, 1997); “Transition probabilities between energy levels in frame of classical approach,” invited lecture at the Inaguration Conference of APCTP (Seoul, June 1996), (to appear in the Proceedings of the Conference, World Scientific, 1997); “Classical description of quantum states and tomography,” talk at the Fifth International Conference “Squeezed States and Uncertainty Relations” (Balatonfured, Hungary, May 1997), (to be published in NASA Conference Publication, 1997).

    Google Scholar 

  14. V. I. Man’ko, J. Russ. Laser Research (Plenum Press), 17, 579 (1996).

    Article  Google Scholar 

  15. S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum Semiclass. Opt., 7, 615 (1995).

    Article  Google Scholar 

  16. G. M. D’Ariano, S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum Semiclass. Opt., 8, 1017 (1996).

    Article  Google Scholar 

  17. S. Wallentowitz and W. Vogel, Phys. Rev. A, 55, 4438 (1997).

    Article  Google Scholar 

  18. A. Wünsche, J. Mod. Opt. (1997, to appear).

    Google Scholar 

  19. J. Bertrand and P. Bertrand, Found. Phys., 17, 397 (1987).

    Article  MathSciNet  Google Scholar 

  20. K. Vogel and H. Risken, Phys. Rev. A, 40, 2847 (1989).

    Article  Google Scholar 

  21. V. V. Dodonov and V. I. Man’ko, Phys. Lett. A, 229,335 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. I. Man’ko and O. V. Man’ko, Zh. Éksp. Teor. Fiz. (1997, to appear).

    Google Scholar 

  23. U. Leonhardt, Phys. Rev. A, 53, 2998 (1996).

    Article  MathSciNet  Google Scholar 

  24. O. V. Man’ko, “Symplectic tomography of nonclassical states of a trapped ion,” Preprint IC/96/39 (ICTP, Trieste, 1996); Los Alamos Report No. quant-ph/9604018; J. Russ. Laser Research (Plenum Press), 17, 439 (1996); “Symplectic tomography of Schrödinger cat states of a trapped ion,” in: Proceedings of the Second International Symposium on Fundamental Problems in Quantum Mechanics (Oviedo, Spain, July 1996), Eds.: M. Ferrero and A. van der Merwe (Kluwer Academic Press, 1997, to appear); “Symplectic tomography of nonlinear Schrödinger cats of a trapped ion,” talk at the Fifth International Conference “Squeezed States and Uncertainty Relations” (Balatonfured, Hungary, May 1997), (to be published in NASA Conference Publication, 1997).

    Google Scholar 

  25. O. V. Man’ko, Phys. Lett. A, 228, 29 (1997).

    Article  MathSciNet  Google Scholar 

  26. S. Mancini, V. I. Man’ko, and P. Tombesi, Europhys. Lett., 37, 79 (1997).

    Article  Google Scholar 

  27. S. Mancini, V. I. Man’ko, and P. Tombesi, J. Mod. Opt. (1997, to appear).

    Google Scholar 

  28. S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum Semiclass. Opt. (1997, to appear).

    Google Scholar 

  29. R. J. Glauber, in: Recent Developments in Quantum Optics, Proceedings of the International Conference on Quantum Optics(Hyderabad, India, January 1991), Ed.: R. Inguva (Plenum Press, New York, 1993), p. 1.

    Google Scholar 

  30. G. Schrade, V. I. Man’ko, W. P. Schleich, and R. J. Glauber, Quantum Semiclass. Opt., 7, 307 (1995).

    Article  Google Scholar 

  31. I. A. Malkin and V. I. Man’ko, Phys. Lett. A, 32, 243 (1970).

    Article  Google Scholar 

  32. E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss., 24, 296 (1930).

    Google Scholar 

  33. V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, “f-Oscillators,” in: Proceedings of the Fourth Wigner Symposium(Guadalajara, Mexico, July 1995), Eds.: N. M. Atakishiyev, T. H. Seligman, and K.-B. Wolf (World Scientific, Singapore, 1996), p. 421.

    Google Scholar 

  34. V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Scripta, 55, 528 (1996).

    Article  Google Scholar 

  35. R. L. de Matos Filho and W. Vogel, Phys. Rev. A, 54, 4560 (1996).

    Article  Google Scholar 

  36. V. V. Dodonov, O. V. Man’ko, and V. I. Man’ko, Phys. Rev. A, 50, 813 (1994).

    Article  Google Scholar 

  37. O. V. Man’ko and N. V. Tcherniega, “Photon distribution function for Stocks wave for stimulated Raman scattering,” Preprint IC/97 (ICTP, Trieste, 1997); Los Alamos Report No. quant-ph/9705004; J. Russ. Laser Research (Plenum Press), 18, No. 4 (1997).

    Google Scholar 

  38. V. V. Dodonov and V. I. Man’ko, Invariants and Evolution of Nonstationary Quantum Systems, Proceedings of the Lebedev Physical Institute (Nova Science, New York, 1989), Vol. 183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Man’ko, O. (1998). Tomography of Spin States and Classical Formulation of Quantum Mechanics. In: Gruber, B., Ramek, M. (eds) Symmetries in Science X. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1537-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1537-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1539-9

  • Online ISBN: 978-1-4899-1537-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics