Skip to main content

The Effect of Microstructure on the Fatigue Behavior of NI Base Superalloys

  • Chapter
Fatigue

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((SAMC,volume 27))

Abstract

The fatigue crack propagation (FCP) and low cycle fatigue (LCF) behavior of Ni base systems is reviewed. It is seen that for typical Ni base alloys such as Waspaloy, René 95, In 718 and Astroloy the FCP rate decreases with increasing slip planarity, in agreement with previous theoretical suggestions.

The high temperature LCF behavior of alloys such as René 77, René 80 and others is determined by a trade-off between structural coarsening, which is beneficial, and environmental degradation. In René 80 at 871°C and 982°C the trade-off is such that the life increases with decreasing frequency or with imposition of a hold time. Low cycle fatigue data for alloys such as René 77, René 80, Mar M002 and Nimonic 90 are in agreement with an idea which assumes that crack initiation occurs at a unique combination of maximum stress and environmental damage. This idea is used to deduce an expression for the LCF behavior of stable materials in terms of frequency, hold time, temperature, plastic strain range and cyclic stress/strain parameters. The resulting model predicts general trends in high temperature LCF behavior as well as Coffin-Manson LCF exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Nicholas: “Life Predictions for Turbine Engine Components” See this volume.

    Google Scholar 

  2. R. H. Vanstone and D. M. Carlson: “Long Life Engine Disks from Gas Atomized Powder” DARPA Contract #F33615-78-C-5100.

    Google Scholar 

  3. R. Stolz and A. Pineau: “Dislocation Precipitate Interaction and Cyclic Stress Strain Behavior of a γ’ Strengthened Superalloy”. Mat. Sci. and Engr. 34, 1978, pp. 275–284.

    Article  Google Scholar 

  4. ASTM E399-78a: “Standard Test Method for Fracture Toughness of Metallic Materials”. 1979 Annual Book of ASTM Standards ASTM, Philadelphia, Pennsylvania, 1979, pp. 540–561.

    Google Scholar 

  5. J. Bartos and Stephen D. Antolovich: “Effect of Grain Size and γY’ Size on FCP in René, 95“. Fracture 1977, Vol. 2, pp. 996–1006.

    Google Scholar 

  6. H. F. Merrick and S. Floreen: “The Effect of Microstructure on Elevated Temperature Crack Growth in Ni Base Alloys”: Met. Trans., 9A, 1978, pp. 231–233.

    CAS  Google Scholar 

  7. W. J. Mills and L. A. James: “Effect of Heat Treatment on Elevated Temperature Fatigue Crack Growth Behavior of Two Heats of Alloy 718”. ASME Publication 7-WA/PUP-3, 1979.

    Google Scholar 

  8. J. Lindigkeit, G. Terlinde, A. Gysler and G. Lütjering: “The Effect of Grain Size on the FCP Behavior of Age Hardened Alloys in Inert and Corrosive Environment” Acta. Met., 27, 1979, pp. 1717–1726.

    Article  CAS  Google Scholar 

  9. A. Pineau: “Influence of Micromechanics of Cyclic Deformation at Elevated Temperature on Fatigue Behavior”. Creep-Fatigue-Environment Interactions, Ed. R. M. Pelloux and N. S. Stoloff, AIME, New York, 1980, pp. 24–45.

    Google Scholar 

  10. D. Eylon, J. A. Hall, C. M. Pierce, and D. L. Ruckle: “Micro-structure and Mechanical Properties Relationships in the Ti-11 Alloy at Room and Elevated Temperatures” Met. Trans., 7A, 1976, pp. 1817–1826.

    CAS  Google Scholar 

  11. H. Kitagawa, R. Uyyki and T. Ohira: “Crack-Morphological Aspects in Fracture Mechanics”, Engrg. Frac. Mech., 7, 1975, pp. 515–529.

    Article  Google Scholar 

  12. Stephen D. Antolovich, A. Saxena and G. R. Chanani: “A Model For Fatigue Crack Propagation”, Eng. Fr. Mech., 7, 1975, pp. 649–652.

    Article  CAS  Google Scholar 

  13. A. Saxena and Stephen D. Antolovich: “Low Cycle Fatigue, Fatigue Crack Propagation and Substructures in a Series of Polycrystal-line Cu-Al Alloys”. Met. Trans., 6A, 1975, pp. 1809–1828.

    CAS  Google Scholar 

  14. B. Lawless: “Correlation Between Cyclic Load Response and Fatigue Crack Propagation Mechanisms in the Ni-Base Superalloy Waspaloy” M.S. Thesis, University of Cincinnati, August 1980.

    Google Scholar 

  15. J. K. Tien and S. M. Copley: “The Effect of Orientation and Sense of Applied Uniaxial Stress on the Morphology of Coherent γ’ Precipitates in Stress Annealed Ni Base Superalloy Crystals”. Met. Trans., 2, 1971, pp. 543–553.

    Article  CAS  Google Scholar 

  16. Stephen D. Antolovich, E. Rosa and A. Pineau: “Low Cycle Fatigue of René 77 at Elevated Temperatures.” To appear in Mat. Sci. and Engrg. Feb., 1981.

    Google Scholar 

  17. R. F. Decker and C. T. Sims: “The Metallurgy of Ni Base Alloys”. The Superalloys, Ed. C. T. Sims and W. C. Hagel, John Wiley and Sons, New York, 1972, pp. 33–77.

    Google Scholar 

  18. Stephen D. Antolovich, P. Domas and J. L. Strudel: “Low Cycle Fatigue of René 80 as Affected by Prior Exposure”, Met. Trans., 10A, 1979, pp. 1859–1868.

    CAS  Google Scholar 

  19. Stephen D. Antolovich: “Metallurgical Aspects of High Temperature Fatigue”, La Fatigue des Matériaux et des Structures Ed. C. Bathias and J. P. Bailon, Maloine S. A., Paris 1980, pp. 465–496.

    Google Scholar 

  20. P. K. Wright and A. F. Anderson: “The Influence of Orientation on the Fatigue of Directionally Solidified Superalloys”, Super-alloys 1980, Ed. J. K. Tien, S. T. Whodek, H. Morrow III, M. Gell and G. E. Maurer, ASM, Metals Park, Ohio, 1980, pp. 689–698.

    Chapter  Google Scholar 

  21. G. F. Harrison and M. J. Weaver: “The LCF Behavior of Nimonic 90A at Elevated Temperature” AGARD-CP-243, 1978, pp. 6-1-6-19.

    Google Scholar 

  22. V.T.A. Antunes and P. Hancock: “SRP of Mar M002 Over the Temperature Range 750°–1040°C. Ibid. pp. 5.1-5.9.

    Google Scholar 

  23. S. S. Manson: “The Challenge to Unify Treatment of High Temperature Fatigue-A Partisan Proposal Based on SRP”. ASTM STP 520 pp. 744-782.

    Google Scholar 

  24. A. J. McEvily: “Creep Fatigue Effects in Ti Alloys”. See this volume.

    Google Scholar 

  25. Stephen D. Antolovich, R. Baur and S. Liu: “A Mechanistically Based Model for High Temperature LCF of Ni Base Alloys”, Super-alloys 1980, pp. 605-613.

    Google Scholar 

  26. Stephen D. Antolovich, S. Liu and R. Baur: “Low Cycle Fatigue Behavior of René 80 at Elevated Temperatures”. Met. Trans., 12A, 1981, pp. 473–481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antolovich, S.D., Jayaraman, N. (1983). The Effect of Microstructure on the Fatigue Behavior of NI Base Superalloys. In: Burke, J.J., Weiss, V. (eds) Fatigue. Sagamore Army Materials Research Conference Proceedings, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1736-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1736-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1738-6

  • Online ISBN: 978-1-4899-1736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics