Skip to main content

Wind Wave Transformation

  • Chapter
Nearshore Sediment Transport

Abstract

Wave-induced velocities are the primary driving force for littoral sand transport. For this reason, a major component of the NSTS program was to measure wave associated velocity and elevation fluctuations. A description of the shoaling wave transformation is a necessary ingredient in the development of any sediment transport model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailard, J. A., 1981, An energetics total load sediment transport model for a plane sloping beach, Journal of Geophysical Research, 86: 10938–10954.

    Article  Google Scholar 

  • Battjes, J. A., 1974, Surf similarity, Proceedings, Fourteenth Coastal Engineering Conference, June 24–28, 1974, Copenhagen, Denmark, American Society of Civil Engineers, New York: 466-480.

    Google Scholar 

  • Battjes, J. A. and J. P. F. M. Janssen, 1978, Energy loss and set-up due to breaking of random waves, Proceedings, Sixteenth Coastal Engineering Conference, August 27–September 3, 1978, Hamburg, Germany, American Society of Civil Engineers, New York: 569.

    Google Scholar 

  • Bowden, K. F. and R. A. White, 1966, Measurements of the orbital velocities of sea waves and their use in determining the directional spectrum, Geophysical Journal Royal Astronomical Society, 12: 33–54.

    Article  Google Scholar 

  • Bowen, A. J., 1980, Simple models of nearshore sedimentation; beach profiles and longshore bars; in the coastline of Canada, Geological Survey of Canada: 21-30.

    Google Scholar 

  • Busching, F., 1978, Anomalous dispersion of Fourier components of surface gravity waves in the nearshore area, Proceedings, Sixteenth Coastal Engineering Conference, August 27–September 3, 1978, Hamburg, Germany, American Society of Civil Engineers, New York: 247-267.

    Google Scholar 

  • Cartwright, D. E. and M. S. Longuet-iggins, 1956, The statistical distribution of the maxima of a random process, Proceedings of the Royal Society of London, Series A, 237: 212–232.

    Article  Google Scholar 

  • Cavaleri, L., J. A. Ewing and N. D. Smith, 1978, Measurement of the pressure and velocity field below surface waves, in Turbulent Fluxes Through the Sea Surface Wave Dynamics and Predictions, NATO Conference, Series V., Plenum, New York: 257-272.

    Google Scholar 

  • Chakrabarti, S. K. and R. P. Cooley, 1977, Statistical distributions of periods and heights of ocean waves, Journal of Geophysical Research, 82: 1363–1368.

    Article  Google Scholar 

  • Crawford, D. R., B. M. Lake, P. G. Saffman and H. C. Yuen, 1981, Effects of nonlinearity and spectral bandwidth on the dispersion relation and component phase speeds of surface gravity waves, Journal of Fluid Mechanics, 112: 1–32.

    Article  Google Scholar 

  • Dobson, R. S., 1967, Some applications of a digital computer to hydraulic engineering problems, Technical Report 80, Stanford University, Stanford, California.

    Google Scholar 

  • Forristall, G. Z., 1978, On the statistical distribution of wave heights in a storm, Journal of Geophysical Research, 83: 2353–2358.

    Article  Google Scholar 

  • Freilich, M. and R. T. Guza, 1984, Nonlinear effects on shoaling surface gravity waves, Philosophic Transcript of the Royal Society of London, A-311: 1–41.

    Google Scholar 

  • Guza, R. T. and E. B. Thornton, 1980, Local and shoaled comparisons of sea surface elevations, pressures, and velocities, Journal of Geophysical Research, 85: 1524–1530.

    Article  Google Scholar 

  • Guza, R. T. and E. B. Thornton, 1985, Velocity moments in the nearshore, Journal of Waterways, Port, Coastal and Ocean Engineering, 111(2): 235–256.

    Article  Google Scholar 

  • Hedges, T. S. and M. S. Kirkgoz, 1981, An experimental study of the transformation zone of plunging breakers, Coastal Engineering, 4: 319–333.

    Article  Google Scholar 

  • Huang, N. E. and C. C. Tung, 1977, The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field, Journal of Physical Oceanography, 7: 403–414.

    Article  Google Scholar 

  • Hwang, Li-San and D. Divoky, 1970, Breaking wave set-up and decay on gentle slopes, Proceedings, Twelfth Coastal Engineering Conference, September 13–18, 1970, Washington, D.C., American Society of Civil Engineers, New York: 377-389.

    Google Scholar 

  • Inman, D. L., R. J. Tait and C. E. Nordstrom, 1971, Mixing in the surf zone, Journal of Geophysical Research, 76(15): 3493–3514.

    Article  Google Scholar 

  • Longuet-Higgins, M. S., 1952, On the statistical distribution of the heights of sea waves, Journal of Marine Research, 11(3): 245–266.

    Google Scholar 

  • Longuet-Higgins, M. S., 1975, On the joint distribution of the periods and amplitudes of sea waves, Journal of Geophysical Research, 80: 2688–2694.

    Article  Google Scholar 

  • Longuet-Higgins, M. S.,. 1980, On the distribution of the heights of sea waves: some effects of nonlinearity and finite bandwidth, Journal of Geophysical Research, 85: 1519–1523.

    Article  Google Scholar 

  • Mitsuyasu, H., Y. Kuo and A. Masuda, 1979, On the dispersion relation of random gravity waves, part 2: an experiment, Journal of Fluid Mechanics, 92(4): 731–749.

    Article  Google Scholar 

  • Phillips, O. M., 1981, The dispersion of short wavelets in the presence of a dominant long wave, Journal of Fluid Mechanics, 107: 465–485.

    Article  Google Scholar 

  • Plant, W. J. and J. W. Wright, 1979, Spectral decomposition of short gravity wave systems, Journal of Physical Oceanography, 9: 621–624.

    Article  Google Scholar 

  • Ramamonjiarisoa, A., S. Baldy and I. Choi, 1977, Laboratory studies on wind-wave generation, amplification and evolution, NATO Symposium on Turbulent Fluxes through the Sea Surface, Wave Dynamics and Prediction, Marseille, France: 402-420.

    Google Scholar 

  • Simpson, J. H., 1969, Observation of the directional characteristics of waves, Geophysical Journal Royal Astronomic Society, 17: 93–120.

    Article  Google Scholar 

  • Stoker, J. J., 1957, Water Waves, Interscience, New York, 567 pp.

    Google Scholar 

  • Suhayda, I. N. and N. R. Pettigrew, 1977, Observations of wave height and wave celerity in the surf zone, Journal of Geophysical Research, 82(9): 1419–1424.

    Article  Google Scholar 

  • Svendsen, I. A., P. A. Madsen and J. Buhr Hansen, 1978, Wave characteristics in the surf zone, Proceedings, Sixteenth Coastal Engineering Conference, August 27–September 3, 1978, Hamburg, Germany, American Society of Civil Engineers, New York: 520-539.

    Google Scholar 

  • Tayfun, M. A., 1980, Narrow-band nonlinear sea waves, Journal of Geophysical Research, 85: 1548–1552.

    Article  Google Scholar 

  • Tayfun, M. A., 1981, Breaking-limited wave heights, Journal of Waterway, Port, Coastal and Ocean Division, Proceedings, American Society of Civil Engineers, 107(WW2): 59–70.

    Google Scholar 

  • Thornton, E. B. and R. F. Krapohl, 1974, Water particle velocities measured under ocean waves, Journal of Geophysical Research, 79: 847–852.

    Article  Google Scholar 

  • Thornton, E. B., J. S. Galvin, F. L. Bub and D. P. Richardson, 1976, Kinematics of breaking waves, Proceedings, Fifteenth Coastal Engineering Conference, July 11–17, 1976, Honolulu, Hawaii, American Society of Civil Engineers, New York: 461-476.

    Google Scholar 

  • Thornton, E. B. and R. T. Guza, 1982, Energy saturation and phase speeds measured on a natural beach, Journal of Geophysical Research, 84: 9499–9508.

    Article  Google Scholar 

  • Thornton, E. B. and R. T. Guza, 1983, Transformation of wave height distribution, Journal of Geophysical Research, 88: 5925–5938.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thornton, E.B., Guza, R.T. (1989). Wind Wave Transformation. In: Seymour, R.J. (eds) Nearshore Sediment Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2531-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2531-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2533-6

  • Online ISBN: 978-1-4899-2531-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics