Skip to main content

Interparticle Forces in Relation to the Stability of Soil Aggregates

  • Chapter
Soil Colloids and Their Associations in Aggregates

Part of the book series: NATO ASI Series ((NSSB,volume 214))

Abstract

The forces which operate within soil aggregates and which alter their cohesion or stability can, for the purposes of discussion, be divided into two groups. One group requires the presence, as it were, of foreign materials, other than water, to establish interparticle binding forces. These include inorganic cementing agents such as iron oxides, organic matter such as polyelectrolytes and polar macromolecules which adsorb onto particle surfaces to form interparticle bridges, as well as much larger entities such as fungal hyphae and plant roots. In effect, these agencies are capable of establishing very long range interparticle forces and, therefore, of contributing directly to the stability of aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aylmore, L.A.G. and Quirk, J.P. 1959. Swelling of clay water systems. Nature, 183, 1752–1753.

    Article  Google Scholar 

  • Aylmore, L.A.G. and Quirk, J.P. 1962. The structural status of clay systems. Clays Clay Miner., 9, 104–130.

    Article  Google Scholar 

  • Aylmore, L.A.G. and Quirk, J.P. 1967. The micropore size distribution of clay mineral systems. J. Soil Sci., 18, 1–17.

    Article  CAS  Google Scholar 

  • Aylmore, L.A.G. and Quirk, J.P. 1971. Domains and quasi-crystalline regions in clay systems. Soil Sci. Soc. Amer. Proc., 35, 652–654.

    Article  CAS  Google Scholar 

  • de Boer, J.H. 1958. In D.H. Everett and F.S. Stone (eds.). The structure and properties of porous materials. Academic Press, N.Y., Butterworths Scientific Publications, London.

    Google Scholar 

  • Chan, D.Y.C., Pashley, R.M. and Quirk, J.P. 1984. Surface potentials derived from co-ion exclusion measurements on homoionic montmorillonite and illite. Clays Clay Miner., 32, 131–138.

    Article  CAS  Google Scholar 

  • Childs, E.C. and Collis-George, N. 1950. The permeability of porous materials. Proc. Roy. Soc A, 201, 392–405.

    Article  CAS  Google Scholar 

  • Croney, D and Coleman, J.D. 1954. Soil structure in relation to soil suction (pF). J. Soil Sci., 5, 75–84.

    Article  Google Scholar 

  • Emerson, W.W. 1967. A classification of soil aggregates based on their coherence in water. Aust. J. Soil Res., 5, 47–57.

    Article  Google Scholar 

  • Fitzsimmons, R.F., Posner, A.M. and Quirk, J.P. 1970. Electron microscopic and kinetic study of the flocculation of calcium montmorillonite. Israel J. Chem., 8, 301–314.

    CAS  Google Scholar 

  • Greenland, D. J., Lindstrom, G.R. and Quirk, J. P. 1962. Organic materials which stabilise natural soil aggregates. Soil Sci. Soc. Amer. Proc., 26, 366–371.

    Article  CAS  Google Scholar 

  • Greenland, D.J. 1963. Adsorption of polyvinyl alcohols by montmorillonite. J. Colloid Sci., 18, 647–663.

    Article  CAS  Google Scholar 

  • Israelachvili, J.N. and Adams, G.E. 1978. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc. Faraday Trans., 74, 975–1001.

    Article  CAS  Google Scholar 

  • Israelachvili, J.N. 1981. The forces between surfaces. Phil. Mag. A., 43, 753–770.

    Article  CAS  Google Scholar 

  • Israelachvili, J.N. and Pashley, R.M. 1983. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature, 306, 249–250.

    Article  CAS  Google Scholar 

  • Kavanagh, B.V., Posner, A.M. and Quirk, J.P. 1976. The adsorption of polyvinyl alcohol on Gibbsite and Goethite. J. Soil Sci., 27, 467–477.

    Article  CAS  Google Scholar 

  • Marshall, T.J. 1958. A relation between permeability and size distribution of pores. J. Soil Sci., 9, 1–8.

    Article  Google Scholar 

  • Millington, R.J. 1959. Establishment of wheat in relation to apparent density of the surface soil. Aust. J. Agric. Res., 10, 487–494.

    Article  Google Scholar 

  • Millington, R.J. and Quirk, J. P. 1964. Formation factor and permeability equations. Nature, 202, 143–145.

    Article  Google Scholar 

  • Murray, R.S., Coughlan, K.J. and Quirk, J.P. 1985. Nitrogen sorption isotherms and the microstructure of vertisols. Aust. J. Soil Res., 23, 137–149.

    Article  CAS  Google Scholar 

  • Murray, R.S. and Quirk, J.P. 1980. Freeze-dried and critical-point-dried clay — a comparison. Soil Sci Soc. Amer. J., 44, 232–234.

    Article  Google Scholar 

  • Murray, R.S. and Quirk, J.P. 1982. The physical swelling of clays in solvents. Soil Sci. Soc. Amer. J., 46, 865–868.

    Article  CAS  Google Scholar 

  • Norrish, K. and Quirk, J.P. 1954. Crystalline swelling of montmorillonite. Nature, 173, 255–256.

    Article  CAS  Google Scholar 

  • Norrish, K. 1954. The swelling of montmorillonite. Disc. Faraday Soc., 18, 120–134.

    Article  CAS  Google Scholar 

  • Oades, J.M., Lewis, D.G. and Norrish, K. (eds.) 1981. Red-brown earths of Australia. Waite Agricultural Research Institute, University of Adelaide and C.S.I.R.O. Division of Soils, South Australia.

    Google Scholar 

  • Pashley, R.M. 1981a. Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Colloid Interface Sci., 80, 153–162.

    Article  CAS  Google Scholar 

  • Pashley, R.M. 1981b. DLVO and hydration forces between mica surfaces in Li+, Na+, K + and Cs+ electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J. Colloid Interface Sci., 83, 531–546.

    Article  CAS  Google Scholar 

  • Pashley, R.M. and Israelachvili, J.N. 1984. DLVO and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+ and Ba2+ chloride solutions. J. Colloid Interface Sci., 97, 446–455.

    Article  CAS  Google Scholar 

  • Pashley, R.M. and Quirk, J.P. 1984. The effect of cation valency on DLVO and hydration forces between macroscopic sheets of muscovite mica in relation to clay swelling. Colloids Surf., 9, 1–17.

    Article  CAS  Google Scholar 

  • Posner, A.M. and Quirk, J.P. 1964a. The adsorption of water from concentrated electrolyte solutions by montmorillonite and illite. Proc. Roy. Soc. A., 278, 35–56.

    Article  CAS  Google Scholar 

  • Posner, A.M. and Quirk, J.P. 1964b. Changes in basal spacing of montmorillonite in electrolyte solutions. J. Colloid Sci., 19, 798–812.

    Article  CAS  Google Scholar 

  • Quirk, J.P. 1978. In W.W. Emerson, R.D. Bond and A.R. Dexter (eds.). Modifications of soil structure, 3–16. Wiley-Interscience.

    Google Scholar 

  • Quirk, J.P. and Schofield, R.K. 1955. The effect of electrolyte concentration on soil permeability. J. Soil Sci., 6, 163–178.

    Article  CAS  Google Scholar 

  • Quirk, J.P. and Panabokke, C.R. 1962. Incipient failure of soil aggregates. J. Soil Sci., 13, 60–70.

    Article  Google Scholar 

  • Quirk, J.P. and Williams, B.G. 1974. The disposition of organic materials in relation to stable aggregation. Xth Internat. Congress of Soil Science, Moscow, 1, 65–171.

    Google Scholar 

  • Spitzer, J.J. 1984. A re-interpretation of hydration forces near charged surfaces. Nature, 310, 396–397.

    Article  CAS  Google Scholar 

  • Tessier, D. 1984. Etude expérimentale de l’organisation des matériaux argileux. D.Sc. thesis, University of Paris.

    Google Scholar 

  • Tessier, D. and Quirk, J.P. 1979. Sur l’apport de la microscopie électronique dans la connaissance du gonflement des materiaux argileux. C. R. Acad. Sc. Paris, 288, 1375–1378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murray, R.S., Quirk, J.P. (1990). Interparticle Forces in Relation to the Stability of Soil Aggregates. In: De Boodt, M.F., Hayes, M.H.B., Herbillon, A., De Strooper, E.B.A., Tuck, J.J. (eds) Soil Colloids and Their Associations in Aggregates. NATO ASI Series, vol 214. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2611-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2611-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2613-5

  • Online ISBN: 978-1-4899-2611-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics