Skip to main content

Properties of Liquid Phase Sintered Materials

  • Chapter
Liquid Phase Sintering

Abstract

In this discussion, the concern is with the properties of systems with high volume fractions of solid (typically over 50% solid at the sintering temperature), which includes most practical materials processed by liquid phase sintering techniques. There is a diversity of final microstructures possible by liquid phase sintering. The microstructure carries over to affect the properties, especially mechanical behavior. However, microstructure is not the only factor affecting the properties of liquid phase sintered materials (1,2). Table 9.1 lists the specific factors by categories of powder characteristics, sintering cycle, alloy composition, post-sintering heat treatment, sintered microstructure, and testing conditions. In light of such diversity, it is difficult to make specific statements about optimal conditions. However, there are some general results which provide insight to the links between composition, processing, microstructure, and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. German and J. E. Hanafee, “Processing Effects on Toughness for Liquid Phase Sintered W-Ni-Fe,” Processing of Metal and Ceramic Powders, R. M. German and K. W. Lay (eds.), The Metallurgical Society, Warrendale, PA, 1982, pp. 267–282.

    Google Scholar 

  2. R. M. German, J. E. Hanafee, and S. L. DiGiallonardo, “Toughness Variation with Test Temperature and Cooling Rate for Liquid Phase Sintered W-3.5Ni-1.5Fe,” Metall. Trans. A, 1984, vol. 15A, pp. 121–128.

    Article  Google Scholar 

  3. Z. Hashin, “Analysis of Composite Materials — A Survey,” J. Appl. Mech., 1983, vol. 50, pp. 481–505.

    Article  Google Scholar 

  4. H. Doi, Elastic and Plastic Properties of WC-Co Composite Alloys, Freund Scientific Publications, Tel-Aviv, Israel, 1974.

    Google Scholar 

  5. H. Fischmeister and B. Karlsson, “Plastizitatseigenschaften Grob-Zweiphasiger Werkstoffe,” I. Metallkde., 1977, vol. 68, pp. 311–327.

    CAS  Google Scholar 

  6. R. K. Viswanadham and J. D. Venables, “A Simple Method for Evaluating Cemented Carbides,” Metall. Trans. A, 1977, vol. 8A, pp. 187–191.

    Article  Google Scholar 

  7. G. Grathwohl and R. Warren, “The Effect of Cobalt Content on the Microstructure of Liquid-Phase Sintered TaC-Co Alloys,” Mater. Sci. Eng., 1974, vol. 14, pp. 55–65.

    Article  CAS  Google Scholar 

  8. J. Gurland and P. Bardzil, “Relation of Strength, Composition, and Grain Size of Sintered WCCo Alloys,” Trans. TMS-AIME, 1955, vol. 203, pp. 311–315.

    Google Scholar 

  9. R. Warren and B. Johannesson, “The Fracture Toughness of Hardmetals,” Inter. J. Refractory Hard Met., 1984, vol. 3, pp. 187–191.

    CAS  Google Scholar 

  10. H. E. Exner and J. Gurland, “A Review of Parameters Influencing Some Mechanical Properties of Tungsten Carbide-Cobalt Alloys,” Powder Met., 1970, vol. 13, pp. 13–31.

    CAS  Google Scholar 

  11. F. V. Lenel, Powder Metallurgy Principles and Applications, Metal Powder Industries Federation, Princeton, NJ, 1980, pp. 383–400.

    Google Scholar 

  12. V. K. Sarin, “Cemented Carbide Cutting Tools,” Advances in Powder Technology, G. Y. Chin (ed.), American Society for Metals, Metals Park, OH, 1982, pp. 253–288.

    Google Scholar 

  13. J. Gurland, “A Structural Approach to the Yield Strength of Two-Phase Alloys with Coarse Microstructures,” Mater. Sci. Eng., 1979, vol. 40, pp. 59–71.

    Article  CAS  Google Scholar 

  14. R. H. Krock, “Elastic and Plastic Deformation of Dispersed Phase Liquid Phase Sintered Tungsten Composite Materials,” Metals for the Space Age, F. Benesovsky (ed.), Metallwerk Plansee, Reutte, Austria, 1965, pp. 256–275.

    Google Scholar 

  15. C. Nishimatsu and J. Gurland, “Experimental Survey of the Deformation of the Hard-Ductile Two-Phase Alloy System WC-Co” Trans. ASM, 1960, vol. 52, pp. 469–484.

    CAS  Google Scholar 

  16. B. Paul, “Prediction of Elastic Constants of Multiphase Materials,” Trans TMS-AIME, 1960, vol. 218, pp. 36–41.

    CAS  Google Scholar 

  17. H. Krock, “Some Comparisons Between Fiber-Reinforced and Continuous Skeleton Tungsten-Copper Composite Materials,” J. Mater., 1966, vol. 1, pp. 278–292.

    Google Scholar 

  18. M. Nakamura and J. Gurland, “The Fracture Toughness of WCCo Two Phase Alloys — A Preliminary Model,” Metall. Trans. A, 1980, vol. 11A, pp. 141–146.

    Google Scholar 

  19. J. R. Pickens and J. Gurland, “The Fracture Toughness of WCCo Alloys Measured on Single-Edge Notched Beam Specimens Précracked by Electron Discharge Machining,” Mater. Sci. Eng., 1978, vol. 33, pp. 135–142.

    Article  CAS  Google Scholar 

  20. J. Spanoudakis and R. J. Young, “Crack Propagation in a Glass Particle-Filled Epoxy Resin. Part 1. Effect of Particle Volume Fraction and Size,” J. Mater. Sci., 1984, vol. 19, pp. 473–486.

    Article  CAS  Google Scholar 

  21. D. V. Edmonds and P. N. Jones, “Interfacial Embrittlement in Liquid-Phase Sintered Tungsten Heavy Alloys,” Metall. Trans. A, 1979, vol. 10A, pp. 289–295.

    Article  Google Scholar 

  22. T. R. Moules and C. A. Calow, “Studies on the Activation-Sintering of Iron Powder,” Powder Met., 1972, vol. 15, pp. 55–66.

    CAS  Google Scholar 

  23. J. Spandoukakis and R. J. Young, “Crack Propagation in a Glass Particle-Filled Epoxy Resin. Part 2. Effect of Particle-Matrix Adhesion,” J. Mater. Sci., 1984, vol. 19, pp. 487–496.

    Article  Google Scholar 

  24. C. Li and R. M. German, “The Properties of Tungsten Processed by Chemically Activated Sintering,” Metall. Trans. A, 1983, vol. 14A, pp. 2031–2041.

    Article  Google Scholar 

  25. K. S. Churn and R. M. German, “Fracture Behavior of W-Ni-Fe Heavy Alloys,” Metall. Trans. A, 1984, vol. 15A, pp. 331–338.

    Article  Google Scholar 

  26. L. Albano-Muller, F. Thummler, and G. Zapf, “High-Strength Sintered Iron-Base Alloys by Using Transition Metal Carbides,” Powder Met., 1973, vol. 16, pp. 236–256.

    Google Scholar 

  27. J. L. Chermant and F. Osterstock, “Elastic and Plastic Characteristics of WC-Co Composite Materials,” Powder Met. Inter., 1979, vol. 11, pp. 106–109.

    CAS  Google Scholar 

  28. J. L. Chermant, A. Deschanvres, and F. Osterstock, “Factors Influencing the Rupture Stress of Hardmetals,” Powder Met., 1977, vol. 20, pp. 63–69.

    CAS  Google Scholar 

  29. J. L. Chermant, M. Coster, G. Hautier, and P. Schaufelberger, “Statistical Analysis of the Behaviour of Cemented Carbides under High Pressure,” Powder Met., 1974, vol. 17, pp. 85–102.

    Google Scholar 

  30. T. Zhenyao, “A New Statistical Relation Between the Strength and the Microstructural Parameters,” Mater. Sci. Eng., 1982, vol. 56, pp. 73–85.

    Article  Google Scholar 

  31. J. Lorenz, J. Weiss, and G. Petzow, “Dense Silicon Nitride Alloys: Phase Relations and Consolidation, Microstructure and Properties,” Advances in Powder Technology, G. Y. Chin (ed.), American Society for Metals, Metals Park, OH, 1982, pp. 289–308.

    Google Scholar 

  32. E. A. Almond, “Deformation Characteristics and Mechanical Properties of Hardmetals,” Science of Hard Materials, R. K. Viswanadham, D. J. Rowcliffe and J. Gurland (eds.), Plenum Press, New York, NY, 1983, pp. 517–557.

    Chapter  Google Scholar 

  33. S. Amberg and H. Doxner, “Porosity in Cemented Carbides,” Powder Met., 1977, vol. 20, pp. 1–10.

    CAS  Google Scholar 

  34. C. Chatfield, “Comments on Microstructure and the Transverse Rupture Strength of Cemented Carbides,” Inter. J. Refractory Hard Met., 1985, vol. 4, pp. 48.

    CAS  Google Scholar 

  35. P. B. Anderson, “Hartmetalle erhohter Zahigkeit,” Planseeber. Pulvermet., 1967, vol. 15, pp. 180–186.

    CAS  Google Scholar 

  36. L. LeRoux, “Microstructure and Transverse Rupture Strength of Cemented Carbides,” Inter. J. Refract. Hard Met., 1984, vol. 3, pp. 99–100.

    CAS  Google Scholar 

  37. U. Engel and H. Hubner, “Strength Improvement of Cemented Carbides by Hot Isostatic Pressing (HIP),” J. Mater. Sci., 1978, vol. 13, pp. 2003–2012.

    Article  CAS  Google Scholar 

  38. S. Amberg, E. A. Nylander, and B. Uhrenius, “The Influence of Hot Isostatic Pressing on the Porosity of Cemented Carbide,” Powder Met. Inter., 1974, vol. 6, pp. 178–180.

    CAS  Google Scholar 

  39. J. L. Chermant and F. Osterstock, “Fracture Toughness and Fracture of WCCo Composites,” J. Mater. Sci., 1976, vol. 11, pp. 1939–1951.

    Article  CAS  Google Scholar 

  40. R. M. German and L. L. Bourguignon, “Analysis of High Tungsten Content Heavy Alloys,” Powder Metallurgy in Defense Technology, vol. 6, C. L. Freeby and W. J. Ullrich (eds.), Metal Powder Industries Federation, Princeton, NJ, 1985, pp. 117–131.

    Google Scholar 

  41. F. Osterstock, “Impact Behaviour of Tungsten Carbide-Cobalt Alloys,” Inter. J. Refractory Hard Metals, 1983, vol. 2, pp. 116–120.

    CAS  Google Scholar 

  42. F. E. Sczerzenie and H. C. Rogers, “Hydrogen Embrittlement of Tungsten Base Heavy Alloys,” Hydrogen in Metals, I. M. Bernstein and A. W. Thompson (eds.), American Society for Metals, Metals Park, OH, 1974, pp. 645–655.

    Google Scholar 

  43. S. B. Luyckx, “Role of Inclusions in the Fracture Initiation Process in WC-Co Alloys,” Acta Met., 1975, vol. 23, pp. 109–115.

    Article  CAS  Google Scholar 

  44. C. J. Li and R. M. German, “Enhanced Sintering of Tungsten — Phase Equilibria Effects on Properties,” Inter. J. Powder Met. Powder Tech., 1984, vol. 20, pp. 149–162.

    CAS  Google Scholar 

  45. B. C. Muddle, “Interphase Boundary Precipitation in Liquid Phase Sintered W-Ni-Fe and W-Ni-Cu Alloys,” Metall. Trans. A, 1984, vol. 15A, pp. 1089–1098.

    Article  Google Scholar 

  46. B. C. Muddle and D. V. Edmonds, “Interfacial Segregation and Embrittlement in Liquid Phase Sintered Tungsten Alloys,” Metal Sci., 1983, vol. 17, pp. 209–218.

    Article  CAS  Google Scholar 

  47. K. S. Churn and D. N. Yoon, “Pore Formation and its Effect on Mechanical Properties in W-Ni-Fe Heavy Alloy,” Powder Met., 1979, vol. 22, pp. 175–178.

    CAS  Google Scholar 

  48. L. Ekbom, “Microstructural Study of the Deformation and Fracture Behavior of a Sintered Tungsten-Base Composite,” Modern Developments in Powder Metallurgy, vol. 14, H. H. Hausner, H. W. Antes and G. D. Smith (eds.), Metal Powder Industries Federation, Princeton, NJ, 1981, pp. 177–188.

    Google Scholar 

  49. C. T. Peters, “The Relationship Between Palmqvist Indentation Toughness and Bulk Fracture Toughness for Some WC-Co Cemented Carbides,” J. Mater. Sci., 1979, vol. 14, pp. 1619–1623.

    Article  CAS  Google Scholar 

  50. K. S. Cherniavsky, “Stereology of Cemented Carbides,” Sci. Sintering, 1982, vol. 14, pp. 1–12.

    Google Scholar 

  51. J. E. Marion, A. G. Evans, M. D. Drory, and D. R. Clarke, “High Temperature Failure Initiation in Liquid Phase Sintered Materials,” Acta Met., 1983, vol. 31, pp. 1445–1457.

    Article  CAS  Google Scholar 

  52. R. L. Tsai and R. Raj, “Creep Fracture in Ceramics Containing Small Amounts of a Liquid Phase,” Acta Met., 1982, vol. 30, pp. 1043–1058.

    Article  CAS  Google Scholar 

  53. P. Lindskog, “The Effect of Phosphorus Additions on the Tensile, Fatigue, and Impact Strength of Sintered Steels Based on Sponge Iron,” Powder Met., 1973, vol. 16, pp. 374–386.

    CAS  Google Scholar 

  54. R. L. Hodson and N. M. Parikh, “Cemented Carbides with High-Melting Binders II: Ternary Equilibrium Systems,” Inter. J. Powder Met., 1967, vol. 3, no.3, pp. 31–40.

    CAS  Google Scholar 

  55. K. S. Hwang and R. M. German, “High Density Ferrous Components by Activated Sintering,” Processing of Metal and Ceramic Powders, R. M. German and K. W. Lay (eds.), The Metallurgical Society, Warrendale, PA, 1982, pp. 295–310.

    Google Scholar 

  56. R. M. German and B. H. Rabin, “Enhanced Sintering Through Second Phase Additions,” Powder Met., 1985, vol. 28, pp. 7–12.

    CAS  Google Scholar 

  57. T. Sadahiro and S. Takatsu, “A New Precracking Method for Fracture Toughness Testing of Cemented Carbides,” Modern Developments in Powder Metallurgy, vol. 14, H. H. Hausner, H. W. Antes and G. D. Smith (eds.), Metal Powder Industries Federation, Princeton, NJ, 1981, pp. 561–572.

    Google Scholar 

  58. S. Singh, “Palmqvist Toughness of Cemented Carbide Alloys,” Inter. J. Refractory Hard Met., 1985, vol. 4, pp. 27–30.

    CAS  Google Scholar 

  59. P. Schwarzkopf and R. Kieffer, Cemented Carbides, MacMillan Co., New York, NY, 1960.

    Google Scholar 

  60. M. D. Thouless and A. G. Evans, “Nucleation of Cavities During Creep of Liquid Phase Sintered Materials,” J. Amer. Ceramic Soc., 1984, vol. 67, pp. 721–727.

    Article  CAS  Google Scholar 

  61. J. T. Smith and J. D. Wood, “Elevated Temperature Compressive Creep Behavior of Tungsten Carbide-Cobalt Alloys,” Acta Met., 1968, vol. 16, pp. 1219–1226.

    Article  CAS  Google Scholar 

  62. A. A. Fahmy and A. N. Ragai, “Thermal Expansion Behavior of Two-Phase Solids,” J. Appl. Phys., 1970, vol. 41, pp. 5108–5111.

    Article  CAS  Google Scholar 

  63. K. Wakashima, M. Otsuka, and S. Umekawa, “Thermal Expansions of Heterogeneous Solids Containing Aligned Ellipsoidal Inclusions,” J. Composite Mater., 1974, vol. 8, pp. 391–404.

    Article  CAS  Google Scholar 

  64. L. I. Tuchinskii, “Thermal Expansion of Composites with a Skeletal Structure,” Soviet Powder Met. Metal Ceram., 1983, vol. 22, pp. 659–664.

    Google Scholar 

  65. S. J. Feltham, B. Yates, and R. J. Martin, “The Thermal Expansion of Particulate-Reinforced Composites,” J. Mater. Sci., 1982, vol. 17, pp. 2309–2323.

    Article  CAS  Google Scholar 

  66. S. Nazare, G. Ondracek, and F. Thummler, “Relations Between Stereometric Microstructure and Properties of Cermets and Porous Materials,” Modern Developments in Powder Metallurgy, vol. 5, H. H. Hausner (ed.), Plenum Press, New York, NY, 1971, pp. 171–186.

    Chapter  Google Scholar 

  67. N. C. Kothari, “Factors Affecting Tungsten-Copper and Tungsten-Silver Electrical Contact Materials,” Powder Met. inter., 1982, vol. 14, pp. 139–159.

    CAS  Google Scholar 

  68. G. H. Gessinger and K. N. Melton, “Burn-off Behaviour of W-Cu Contact Materials in an Electric Arc,” Powder Met. Inter., 1977, vol. 9, pp. 67–72.

    CAS  Google Scholar 

  69. G.J. Witter and W. R. Warke, “A Correlation of Material Toughness, Thermal Shock Resistance, and Microstructure of High Tungsten, Silver-Tungsten Composite Materials,” IEEE Trans. Parts Hybrids Packaging, 1975, vol. 11, pp. 21–29.

    Article  Google Scholar 

  70. A. Ball and A. W. Paterson, “Microstructural Design of Erosion Resistant Hard Materials,” Proceedings Eleventh international Plansee Seminar, vol. 2, H. Bildstein and H. M. Ortner (eds.), Metallwerk Plansee, Reutte, Austria, 1985, pp. 377–391.

    Google Scholar 

  71. J. Larsen-Basse, “Effect of Composition, Microstructure, and Service Conditions on the Wear of Cemented Carbides,” J. Metals, 1983, vol. 35, no.11, pp. 35–42.

    CAS  Google Scholar 

  72. J. Larsen-Basse, “Wear of Hard-Metals in Rock Drilling: A Survey of the Literature,” Powder Met., 1973, vol. 16, pp. 1–32.

    CAS  Google Scholar 

  73. Y. G. Bogatin, “Effect of Phase and Structural Transformations Occurring During Liquid-Phase Sintering on the Magnetic Properties of Samarium Cobalt Magnets,” Soviet Powder Met. Metal Ceram., 1978, vol. 17, pp. 393–398.

    Article  Google Scholar 

  74. G. H. Gessinger and E. De Lamotte, “Der Sintermechanismus von Samarium-Kobalt-Legierungen,” I. Metallkde., 1973, vol. 64, pp. 771–775.

    CAS  Google Scholar 

  75. P. J. Jorgensen and R. W. Bartlett, “Liquid-Phase Sintering of SmCo5,” J. Appl. Phys., 1973, vol. 44, pp. 2876–2880.

    Article  CAS  Google Scholar 

  76. P. J. Jorgensen and R. W. Bartlett, “Solid-Phase Sintering of SmCo5,” J. Less-Common Metals, 1974, vol. 37, pp. 205–212.

    Article  CAS  Google Scholar 

  77. G. Jangg, M. Drozda, H. Danninger, H. Wibbeler, and W. Schatt, “Sintering Behavior, Mechanical and Magnetic Properties of Sintered Fe-Si Materials,” Inter. J. Powder Met. Powder Tech., 1984, vol. 20, pp. 287–300.

    CAS  Google Scholar 

  78. G. Jangg, M. Drozda, H. Danninger, and G. Eder, “Magnetic Properties of Sintered Fe-P Materials,” Powder Met. Inter., 1984, vol. 16, pp. 264–267.

    CAS  Google Scholar 

  79. F. Frehn and W. Hotop, “Effect of Small Boron Contents on the Properties of Compacts Prepared by Vacuum Sintering,” Symposium on Powder Metallurgy, Special Report 58, Iron and Steel Institute, London, UK, 1956, pp. 137–143.

    Google Scholar 

  80. K. H. Moyer, “The Effects of Phosphorus on the Properties of Iron Alloys for Magnetic Applications,” Prog. Powder Met., 1981, vol. 37, pp. 81–98.

    CAS  Google Scholar 

  81. W. Rutkowski and B. Weglinski, “The Influence of Silicon Additions on the Magnetic Properties of Iron Sinters,” Planseeber. Pulvermetall., 1979, vol. 27, pp. 162–177.

    CAS  Google Scholar 

  82. W. Rutkowski and B. Weglinski, “Phosphorus and its Influence on Properties of Magnetically Soft Sinters,” Planseeber. Pulvermetall., 1980, vol. 28, pp. 39–55.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

German, R.M. (1985). Properties of Liquid Phase Sintered Materials. In: Liquid Phase Sintering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3599-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3599-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3601-1

  • Online ISBN: 978-1-4899-3599-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics