Skip to main content

Nutritional Quality of Rice Endosperm

  • Chapter
Rice
  • 1242 Accesses

Abstract

Rice is the staple food of more than half of the world’s population and provides 20% of the per capita energy and 13% of the per capita protein for humans worldwide (FAO 1980; Herdt and Palacpac 1983). In Asia, where 91% of the world’s rice is produced (FAO 1982), rice provides 35% of the energy and 28% of the protein. In addition, rice provides minerals, vitamins, and dietary fiber to the diet of rice-eating people. Thus, rice plays a very important role in providing nutrients to a large segment of the world’s population. Improving its nutritional properties as well as its functional attributes through conventional means of processing and the promising techniques of genetic engineering is a continuing challenge to rice scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, D. 1977. Determining fiber in cereals. Cereal Chem. 54: 360.

    Google Scholar 

  • Baker, D., and Holden, J. M. 1981. Fiber in breakfast cereals. J. Food Sci. 46: 206–208.

    Article  Google Scholar 

  • Barber, S., Benedito de Barber, C., Guardiola, J. L., and Alberola, J. 1967. Chemical composition of rice. IV. Distribution of sugars in the milled kernel. Revis ta Agroquim. Tecnol. Aliment. 7: 346–353 (in Spanish).

    Google Scholar 

  • Barber, S. 1969. Basic studies on aging of milled rice and application to discriminating quality factors. U.S. Dept. of Agriculture, Agricultural Research Service, Foreign Research and Technological Program Division Final Report. Project E-25-AMS-(9).

    Google Scholar 

  • Barber, S. 1972. Milled rice and changes during aging. In Rice: Chemistry and Technology, edited by D. F. Houston. St. Paul, MN: AACC.

    Google Scholar 

  • Bechtel, D. B., and Juliano, B. O. 1980. Formation of protein bodies in the starchy endosperm of rice (Oryza sativa); A reinvestigation. Ann. Bot. London 45: 503–509.

    Google Scholar 

  • Cagampang, G. B., Cruz, L. J., Espiritu, S. G., Santiago, R. G., and Juliano, B. O. 1966. Studies on the extraction and composition of rice proteins. Cereal Chem. 43: 145–155.

    CAS  Google Scholar 

  • Cagampang, G. B., Perdon, A. A., Juliano, B. O. 1976. Changes in salt-soluble proteins of rice during grain development. Phytochemistry 15: 1425–1429.

    Article  CAS  Google Scholar 

  • Casas, A., Barber, S., and Castillo, P. 1963. Quality factors of rice. X. Distribution of fat in the endosperm. Revista Agroquim. Tecnol. Aliment. 3: 241–244(in Spanish).

    Google Scholar 

  • Casey, R., Domoney, C., and Ellis, N. 1986. Legume storage proteins and their genes. In Oxford Surveys of Plant Molecular and Cell Biology 3: 1–95, edited by B. J. Miflin, New York: Oxford University Press.

    Google Scholar 

  • Chavan, J. K., and Duggal, S. K. 1978. Studies on the essential amino acid composition, protein fractions and biological value (BV) of some new varieties of rice. J. Sci. Food Ag. 29: 225–229.

    Article  CAS  Google Scholar 

  • Choudhury, N. H., and Juliano, B. O. 1980. Lipids in developing and mature rice grain. Phytochemistry. 19: 1063–1069.

    Article  CAS  Google Scholar 

  • Chourey, P., Latham, M., and Still, P. 1986. Expression of two sucrose synthase genes in endosperm and seedling cells of maize: evidence of tissue specific polymerization of promoters. Mol. Gen. Genet. 203: 251–255.

    Article  CAS  Google Scholar 

  • Christou, P., McCabe, D. E., and Swain, W. F. 1988. Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol. 87: 671–674.

    Article  CAS  Google Scholar 

  • Christou, P., Swain, W. F., Yang, N. S., and McCabe, D. E. 1989. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Nat. Acad. Sci. USA 86: 7500–7504.

    Article  CAS  Google Scholar 

  • Cocking, E. C., and Davey, M. R. 1987. Gene transfer in cereals. Science 236: 1259–1262.

    Article  CAS  Google Scholar 

  • Croy, R. R. D., and Gatehouse, J. A. 1985. Genetic engineering of seed proteins: current and potential applications. In Plant Genetic Engineering, edited by J. H. Dodds. Cambridge, U.K.: Cambridge University Press, pp. 143–268.

    Google Scholar 

  • Cullumbine, H. 1950. Nitrogen balance studies on rice diets. Brit. J. Nutr. 4: 129–133.

    Article  CAS  Google Scholar 

  • De Datta, S. K., Obcemea, W. M., and Jana, R. K. 1972. Protein content of rice as affected by nitrogen fertilizer and some triazines and substituted ureas. Agron. J. 64: 785–788.

    Article  Google Scholar 

  • De la Pena, A., Lorz, H., and Schell, J. 1987. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325: 274–277.

    Article  Google Scholar 

  • de Lumen, B. O. 1990. Molecular approaches to improving the nutritional and functional properties of plant seeds as food sources: developments and comments. J. Ag. Food Chem. 38: 1779–1788.

    Article  Google Scholar 

  • Del Rosario, A. R., Briones, V. P., Vidal, A. J., and Juliano, B. O. 1968. Composition and endosperm structure of developing and mature rice kernel. Cereal Chem. 45: 225–235.

    Google Scholar 

  • Doll, H. 1984. Nutritional aspects of cereal proteins and approaches to overcome their deficiencies. Phil. Trans. Roy. Soc. London Ser. B 304: 373–380.

    Article  CAS  Google Scholar 

  • Eggum, B. O., Juliano, B. O., and Maningat, C. C. 1982. Protein and energy utilization of rice milling fractions by rats. Plant Foods Hum. Nutr. 31: 371–376.

    Article  CAS  Google Scholar 

  • FAO. 1980. Food Balance Sheets 1975–1977. FAO, Rome, 1,012 pp.

    Google Scholar 

  • FAO. 1982. FAO Production Yearbook. FAO Statistics Ser. 40 Rome, 306 pp.

    Google Scholar 

  • Food and Nutrition Board and National Research Council (FNB). 1974. Recommended Dietary Allowances, 8th ed. Washington, DC: National Academy of Science.

    Google Scholar 

  • Fraley, R. T., Rogers, S. G., and Horsch, R. B. 1986. Genetic transformation in higher plants. CRC Crit. Rev. Plant Sci. 4: 1–46.

    Article  CAS  Google Scholar 

  • Franz, K. B. 1977. Bioavailability of zinc in selected cereals and legumes. Ph.D. dissertation. Univ. of California, Berkeley, CA.

    Google Scholar 

  • Fromm, M., Taylor, L. P., and Talbot, V. 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.

    Article  CAS  Google Scholar 

  • Fukui, T., and Nikuni, Z. 1959. Changes in sugar contents during the germination of rice seeds. Application of the ion exchange resin chromatography. Nippon Nogei Kagaku Kaishi 33: 72–78.

    Article  CAS  Google Scholar 

  • Gasser, C. S., and Fraley, R. T. 1989. Genetically engineering plants for crop improvement. Science 236: 1293–1299.

    Article  Google Scholar 

  • Gatehouse, J. A., Evans, I. M., Croy, R. R. D., and Boulter, D. 1986. Differential expression of genes during seed development. Phil. Trans. Roy. Soc. London Ser. B 314: 367–384.

    Article  CAS  Google Scholar 

  • Gebhardt, S. E., Citrufelli, R., and Matthews, R. H. 1978. Composition of Foods: Agricultural Handbook 8-3. Washington, DC: USDA, Science and Education Administration.

    Google Scholar 

  • Gobel, E., and Lorz, H. 1988. Genetic manipulation of cereals. In Oxford Surveys of Plant Molecular Cell Biology 5: 1–22, edited by B. J. Miflin. New York: Oxford University Press.

    Google Scholar 

  • Goldberg, R. B. 1986. Regulation of plant gene expression. Phil. Trans. Roy. Soc. London Ser. B 314: 343–353.

    Article  CAS  Google Scholar 

  • Goldberg, R. B., Barker, S., and Perez-Grau, L. 1989. Regulation of gene expression during plant embryogenesis. Cell. 56: 149–160.

    Article  CAS  Google Scholar 

  • Gomez, K. A. 1979. Effect of environment on protein and amylose content of rice. In Proceedings of the Workshop on Chemical Aspects of Rice Grain Quality. Los Banos, Philippines: IRRI, pp. 59–68.

    Google Scholar 

  • Gomez, K. A., and De Datta, S. K. 1975. Influence of environment on protein content of rice. Agron. J. 67: 565–568.

    Article  Google Scholar 

  • Gupta, M., Chourey, P., Burr, P., and Still, P. 1988. cDNAs of two non-allelic sucrose synthase genes in maize: cloning, expression, characterization and molecular mapping of the sucrose synthase-2 gene. Plant Mol. Biol. 10: 215–224.

    Article  CAS  Google Scholar 

  • Herdt, R. W., and Palacpac, A. C. 1983. World Rice Facts and Trends. Los Banos, Philippines: IRRI, p. 41.

    Google Scholar 

  • Higgins, T. J. V. 1984. Synthesis and regulation of major proteins in seeds. Ann. Rev. Plant Physiol. 35: 191–221.

    Article  CAS  Google Scholar 

  • Hinton, J. J. C. 1948. The distribution of nicotinic acid in the rice grain. Brit. J. Nutr. 2: 237–241.

    Article  CAS  Google Scholar 

  • Hinton, J. J. C., and Shaw, B. 1953. The distribution of nicotinic acid in the rice grain. Brit. J. Nutr. 8: 65–71.

    Article  Google Scholar 

  • Hogan, J. T., Normand, F. L., and Deobald, H. J. 1964. Method for removal of successive surface layers from brown and milled rice. Rice J. 67(4): 27–34.

    Google Scholar 

  • Hogan, J. T., Normand, F. L., Deobald, H. J., Mottern, H. H., Lynn, L., and Hunnell, J. W. 1968. Production of high-protein rice flour. Rice J. 71(11): 5–6, 8-9, 32.

    Google Scholar 

  • Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eicholtz, D., Rogers, S. G., and Fraley, R. T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  • Houston, D. F., Hill, B. E., Garrett, V. H., and Kester, E. B. 1963. Organic acids in rice and some other cereal seeds. J. Ag. Food Chem. 11: 512–517.

    Article  CAS  Google Scholar 

  • Houston, D. F., Mohammad, A., Wasserman, T., and Kester, E. B. 1964. High-protein rice flours. Cereal Chem. 41: 514–523.

    CAS  Google Scholar 

  • Houston, D. F. 1967. High protein flour can be made from all types of milled rice. Rice J. 70(9): 12–15.

    Google Scholar 

  • Houston, D. F., Iwasaki, T., Mohammad, A., and Chen, L. 1968. Radial distribution of protein by solubility classes in the milled rice kernel. J. Ag. Food Chem. 16: 720–724.

    Article  CAS  Google Scholar 

  • Houston, D. F., Allis, M. E., and Kohler, G. O. 1969. Amino acid composition of rice and rice by-products. Cereal Chem. 46: 527–537.

    CAS  Google Scholar 

  • Houston, D. F., and Kohler, G. O. 1970. Nutritional Properties of Rice. Washington, DC: National Academy of Science. A publication of Nat’l Academy of Science, 65 pp.

    Google Scholar 

  • Houston, D. F. 1972. Rice bran and polish. In Rice: Chemistry and Technology, edited by D. F. Houston. St. Paul, MN: AACC.

    Google Scholar 

  • IRRI. 1977. Annual Report for 1976. Los Banos, Philippines: IRRI.

    Google Scholar 

  • IRRL 1983. Annual Report for 1982. Los Banos, Philippines: IRRI.

    Google Scholar 

  • Joseph, K., Narayana Rao, M., Ganapathy, S., Swaminathan, M., and Subrahamanyan, V. 1958. Studies on the nutritive value of rice and rice diets. II. Metabolism of nitrogen, calcium, and phosphorus in children on poor vegetarian diets containing husked, undermilled and milled raw rice. Ann. Biochem. Exp. Med. Calcutta 18: 51–58.

    CAS  Google Scholar 

  • Juliano, B. O. 1966. Physicochemical data on the rice grain. Int. Rice Res. Inst. Bull. 6..

    Google Scholar 

  • Juliano, B. O. 1972. The rice caryopsis and its composition. In Rice: Chemistry and Technology, edited by D. F. Houston. St Paul, MN: AACC.

    Google Scholar 

  • Juliano, B. O. 1983. Lipids in rice and rice processing. In Lipids in Cereal Technology, edited by P. J. Barnes. London: Academic Press, pp. 305–330.

    Chapter  Google Scholar 

  • Juliano, B. O. 1985. Biochemical properties of rice. In Rice: Chemistry and Technology, edited by B. O. Juliano. St. Paul, MN: AACC, pp. 175–205.

    Google Scholar 

  • Juliano, B. O. 1990. Rice grain quality: problems and challenges. Cereal Foods World 35: 245–253.

    Google Scholar 

  • Juliano, B. O., and Bechtel, D. B. 1985. The rice grain and its chemical composition. In Rice: Chemistry and Technology, edited by B. O. Juliano. St. Paul, MN: AACC, pp. 17–58.

    Google Scholar 

  • Kennedy, B. M., and Schelstraete, M. 1974. Chemical, physical and nutritional properties of high-protein flours and residual kernel from the overmilling of uncoated milled rice. II. Amino acid composition and biological evaluation of the protein. Cereal Chem. 51: 488–457.

    Google Scholar 

  • Kennedy, B. M., Schelstraete, M., and Del Rosario, A. R. 1974. Chemical, physical, and nutritional properties of high-protein flours and residual kernel from the overmilling of uncoated milled rice. I. Milling procedure and protein, fat, ash, and amylose, and starch content. Cereal Chem. 51: 435–448.

    CAS  Google Scholar 

  • Kennedy, B. M., and Schelstraete, M. 1975a. Chemical, physical, and nutritional properties of high-protein flours and residual kernel from the overmilling of uncoated milled rice. III. Iron, calcium, magnesium, phosphorus, sodium, potassium and phytic acid. Cereal Chem. 52: 173–182.

    CAS  Google Scholar 

  • Kennedy, B. M., and Schelstraete, M. 1975b. A note on silicon in rice endosperm. Cereal Chem. 52: 854–856.

    CAS  Google Scholar 

  • Kennedy, B. M., Schelstraete, M., and Tamai, K. 1975. Chemical, physical, and nutritional properties of high-protein flours and residual kernel from the overmilling of uncoated milled rice. IV. Thiamin, riboflavin, niacin, and pyri-doxine. Cereal Chem. 52: 182–188.

    CAS  Google Scholar 

  • Klee, H., Horsch, R., and Rogers, S. 1987. Agrobacterium-mediated plant transformation and its further application to plant biology. Ann. Rev. Plant Physiol. 38: 467–486.

    Article  CAS  Google Scholar 

  • Krishnan, H. B., Reeves, C. D., and Okita, T. W. 1986. ADP glucose pyrophosphorylase is encoded by different rnRNA transcripts in leaf and endosperm of cereals. Plant Physiol. 81: 642–645.

    Article  CAS  Google Scholar 

  • Lee, P. D., and Su, J. C. 1982. Sucrose starch transforming system in rice grain—A tracer feeding study. Proceedings National Science Council Report. China. B6: 189–196.

    Google Scholar 

  • Leung, W. T. W., and Flores, M. 1961. Food Composition Table for Use in Latin America. Institute of Nutrition for Central America and Panama, and the National Institutes of Health. Bethesda, MD.

    Google Scholar 

  • Little, R. R., and Dawson, E. H. 1960. Histology and histochemistry of raw and cooked rice kernels. Food Res. 25: 611–622.

    Article  Google Scholar 

  • Luo, Z., and Wu, R. A. 1988. A simple method for the transformation of rice via the pollen tube pathway. Plant Mol. Biol. Reporter 6: 165–174.

    Article  CAS  Google Scholar 

  • Masironi, R., Koirtyohann, S. R., and Pierce, J. O. 1977. Zinc, copper, cadmium and chromium in polished and unpolished rice. Sci. Total Environ. 7: 27–43.

    Article  CAS  Google Scholar 

  • McCabe, D. E., Swain, W. F., Martinell, B. J., and Christou, P. 1988. Stable transformation of soybean (Glycine max) by particle acceleration. Bio. Tech. 6: 923–926.

    Article  Google Scholar 

  • Milner, M. 1965. High-protein fractions from white rice and simple methods for their production. FAO/WHO/UNICEF Protein Adv. Group News Bull. 5: 39.

    Google Scholar 

  • Mitra, G. N., and Das, B. 1975. The nutritive value of some rice grown in Orissa. I. Protein content and composition of protein. J. Res. Orissa Univ. Ag. Technol. 5: 51–57.

    Google Scholar 

  • Mitsuda, H., Yasumoto, K., Murakami, K., Kusano, T., and Kishida, H. 1967. Studies on the proteinaceous subcellular particles in rice endosperm: Electron-microscopy and isolation. Ag. Biol. Chem. (Tokyo) 31: 293–300.

    Article  CAS  Google Scholar 

  • Mitsuda, H., Murakami, K., Kusano, T., and Fasuiiioto, K. 1969. Fine structure of protein bodies isolated from rice endosperm. Arch. Biochem. Biophys. 130: 678–680.

    Article  CAS  Google Scholar 

  • Miyoshi, H., Okuda, T., Okuda, K., Oi, Y., and Koishi, H. 1986. Effects of rice fiber on fecal weight, apparent digestibility of energy, nitrogen and fat degradation of NDF in young men. J. Nutr. Sci. Vitaminol. 32: 581–589.

    Article  CAS  Google Scholar 

  • Miyoshi, H., Okuda, T., Okuda, K., and Koishi, H. 1987. Effects of brown rice on apparent digestibility and balance of nutrients in young men on low protein diets. J. Nutr. Sci. Vitaminol. 33: 207–218.

    Article  CAS  Google Scholar 

  • Morris, E. R., and Ellis, R. 1976. Isolation of nonferric phytate from wheat bran and its biological value as an iron source to the rat. J. Nutr. 106: 753–760.

    CAS  Google Scholar 

  • Murata, T., Minamikawa, T., Akazawa, T., and Sugiyama, T. 1964. Isolation of ADP-glucose from ripening rice grains and its enzymic synthesis. Arch. Biochem. Biophys. 106: 371–378.

    Article  CAS  Google Scholar 

  • Neuhaus, G., Spangenberg, G., Scheid, O. M., and Schweiger, H. G. 1987. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet. 74: 30–36.

    Google Scholar 

  • Normand, F. L., Soignet, D. M., Hogan, J. T., and Deobald, H. J. 1966. Content of certain nutrients and amimo acid patterns in high-protein rice flour. Rice J. 69(9): 13–18.

    Google Scholar 

  • Nunokawa, Y. 1972. Saké. In Rice: Chemistry and Technology, edited by D. F. Houston. St. Paul, MN: AACC.

    Google Scholar 

  • Ogawa, M., Tanaka, K., and Kasai, Z. 1975. Isolation of high-phytin containing particles from rice grains using an aqueous polymer two-phase system. Ag. Biol. Chem. (Tokyo) 39: 695–700.

    Article  CAS  Google Scholar 

  • Ogawa, M., Tanaka, K., and Kasai, Z. 1977. Note on the phytin-containing particles isolated from rice scutellum. Cereal Chem. 54: 1029–1034.

    CAS  Google Scholar 

  • Ogawa, M., Kumamaru, T., Satoh, H., Iwata, N., Omura, T., Kasai, Z., and Tanaka, K. 1987. Purification of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol. 28: 1517–1527.

    CAS  Google Scholar 

  • Ogawa, M., Kumamaru, T., Satoh, H., Omura, T., Park, T., Shintaku, K., and Baba, K. 1989. Mutants for rice storage protein 2. Isolation and characterization of protein bodies from rice mutants. Theor. Appl. Genet. 78: 305–310.

    CAS  Google Scholar 

  • Padhye, V. W., and Salunkhe, D. K. 1979. Extraction and characterization of rice proteins. Cereal Chem. 56: 389–393.

    CAS  Google Scholar 

  • Pascual, C. G., Singh, R., and Juliano, B. O. 1978. Free sugars of rice grain. Carbohydr. Res. 62: 381–385.

    Article  CAS  Google Scholar 

  • Payne, P. I., and Rhodes, A. P. 1982. Cereal storage proteins: Structure and role in agriculture and food technology. Encyclopedia of Plant Physiology, Vol. 14A, edited by D. Boulter and B. Parthier. Berlin: Springer-Verlag, pp. 346–369.

    Google Scholar 

  • Pedersen, B., and Eggum, B. O. 1983. The influence of milling on the nutritive value of flour from cereal grains 4. Rice. Plant Foods Hum. Nutr. 33: 267–278.

    Article  CAS  Google Scholar 

  • Preiss, J. 1982. Regulation of biosynthesis and degradation of starch. Ann. Rev. Plant Physiol. 33: 431–454.

    Article  CAS  Google Scholar 

  • Preiss, J., and Levi, C. 1980. Starch biosynthesis and degadation. In Biochemistry of Plants, Vol. 3. Carbohydrates: Structure and Function, edited by J. Preiss. New York: Academic Press, pp. 371–423.

    Google Scholar 

  • Primo, E., Casas, A., Barber, S., and Benedito de Barber, C. 1963. Quality factors of rice. IV. Distribution of nitrogen in the endosperm. Revista Agroquim. Tecnol. Aliment. 3: 22–26 (in Spanish).

    Google Scholar 

  • Rama Rao, G., Desikachar, H. S. R., and Subrahnamyan, V. 1960. The effect of the degree of polishing of rice on nitrogen and mineral metabolism in human subjects. Cereal Chem. 37: 71–78.

    Google Scholar 

  • Recommended Dietary Allowances, 1980. Recommended Dietary Allowances, 9th ed. National Research Council. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Resurreccion, A. P., and Juliano, B. O. 1975. Fatty acid composition of rice oils. J. Sci. Food. Ag. 26: 437–439.

    Article  CAS  Google Scholar 

  • Resurreccion, A. P., Hara, T., Juliano, B. O., and Yoshida, S. 1977. Effect of temperature during ripening on grain quality of rice. Soil Sci. Plant Nutr. (Tokyo) 23: 109–112.

    Article  Google Scholar 

  • Resurreccion, A. P., Juliano, B. O., and Tanaka, Y. 1979. Nutrient content and distribution in milling fractions of rice grain. J. Sci. Food Ag. 30: 475–481.

    Article  CAS  Google Scholar 

  • Roth, H. P., and Mehlman, M. A. (Eds.) 1978. Symposium on role of dietary fiber in health. Amer. J. Clin. Nutr. 31(suppl): S1–S291.

    Google Scholar 

  • Roxas, B. V., Loyola, A. S., and Reyes, E. L. 1978. The effect of different degrees of rice milling on nitrogen digestibility and retention. Philippine J. Nutr. 31: 110–113.

    Google Scholar 

  • Santiago, M. I. C., Roxas, B. V., Intengan, C. L., and Juliano, B. O. 1984. Protein and energy utilization of brown, undermilled and milled rices by preschool children. Qual. Plant. Plant Foods Hum. Nutr. 34: 15–25.

    Article  Google Scholar 

  • Saunders, R. M. 1977. Unpublished data. Western Regional Research Center. Berkeley, CA.

    Google Scholar 

  • Schaller, D. 1977. Analysis of dietary fiber. Food Prod. Dev. 11: 70.

    CAS  Google Scholar 

  • Schell, J. 1987. Transgenic plants as tools to study the molecular organization of plant genes. Science 237: 1176–1183.

    Article  Google Scholar 

  • Shewry, P. R., and Miflin, B. J. 1984. Seed storage proteins of economically important cereals. Adv. Cereal Sci. Technol. 7: 1–83.

    Google Scholar 

  • Shimamoto, K., Terada, R., Izawa, T., and Fujimoto, H. 1989. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 337: 274–276.

    Article  Google Scholar 

  • Simpson, J. E., Adair, C. R., Kohler, G., Dawson, E. H., Deobald, H. J., Kester, E. B., Hogan, J. T., Batcher, O. M., and Halick, J. V. 1965. Quality evaluation studies of foreign and domestic rices. U.S. Dept. Ag., Ag. Res. Serv. Tech. Bull. 1331.

    Google Scholar 

  • Subrahmanyan, V., Sreenivasan, A., and Das Gupta, H. P. 1938. Studies on quality in rice. I. Effect of milling on the chemical composition and commercial qualities of raw and parboiled rices. Indian J. Ag, Sci. 8: 459–486.

    CAS  Google Scholar 

  • Sung, S. J. S., Xu, D. P., and Black, C. C. 1989. Identification of actively filling sucrose sinks. Plant Physiol. 89: 1117–1121.

    Article  CAS  Google Scholar 

  • Takaiwa, F., Kikuchi, S., and Oono, K. 1986. The structure of rice storage protein glutelin precursor deduced from cDNA. FEBS Letters 206: 33–35.

    Article  CAS  Google Scholar 

  • Takaiwa, F., Ebunuma, H., Kikuchi, S., and Oono, K. 1987a. Nucleotide sequence of a rice glutelin gene. FEBS Letters 221: 43–47.

    Article  CAS  Google Scholar 

  • Takaiwa, F., Kikuchi, S., and Oono, K. 1987b. A rice glutelin gene family—A major type of glutelin mRNAs can be divided into two classes. Mol. Gen. Genet. 208: 15–22.

    Article  CAS  Google Scholar 

  • Tanaka, K., Yoshida, T. K., and Asada, Z. 1973. Subcellular particles isolated from aleurone layer of rice seeds. Arch. Biochem. Biophys. 155: 136–143.

    Article  CAS  Google Scholar 

  • Tanaka, K., Hayashida, S., and Hongo, M. 1975. The relationship of the feces protein particles to rice protein bodies. Ag. Biol. Chem. Tokyo 39: 515–518.

    Article  CAS  Google Scholar 

  • Tanaka, Y., Resurreccion, A. P., Juliano, B. O., and Bechtel, D. B. 1978. Properties of whole and undigested fraction of protein bodies of milled rice. Ag. Biol. Chem. 42: 2015–2023.

    Article  CAS  Google Scholar 

  • Tanaka, K., Sugimoto, T., Ogawa, M., and Kazai, Z. 1980. Isolation and characterization of two types of protein bodies in the rice endosperm. Ag. Biol. Chem. 44: 1633–1639.

    Article  CAS  Google Scholar 

  • Tanaka, K., Ogawa, M. 1986. Genetic analysis of rice storage proteins. Proceedings of the Institute Rice Genetic Symp. Int. Rice Res. Inst., pp. 887-897.

    Google Scholar 

  • Topfer, R., Gronenborn, B., Schell, J., and Steinbiss, H. H. 1989. Uptake and transient expression of chimeric genes in seed derived embryos. Plant Cell 1: 133–139.

    CAS  Google Scholar 

  • Uchimiya, H., Fushimi, T., Hasimoto, H., Harada, H., Syono, Y., and Sugawara, Y. 1986. Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa). Mol. Gen. Genet. 204: 204–207.

    Article  CAS  Google Scholar 

  • Uchimiya, H., Handa, T., and Brar, D. S. 1989. Transgenic plants. J. Biotech. 12: 1–20.

    Article  CAS  Google Scholar 

  • Van Soest, P. J. 1966. Nonnutritive residues: A system of analysis for the replacement of crude fiber. J. Assoc. Official Anal. Chem. 49: 546.

    Google Scholar 

  • Van Soest, P. J., and Wine, R. H. 1967. Use of detergents in analysis of fibrous feeds. 4. Determination of plant cell wall constituents. J. Assoc. Official Anal. Chem. 50: 50.

    Google Scholar 

  • Watt, B. K., and Merrill, A. L. 1963. Composition of foods—Raw, processed, prepared. In Agricultural Handbook. U.S. Dept. of Agriculture, Agricultural Research Service.

    Google Scholar 

  • Weising, K., Schell, J., and Kahl, G. 1988. Foreign genes in plants: transfer, structure, expression and application. Ann. Rev. Genet. 22: 421–477.

    Article  CAS  Google Scholar 

  • Wieser, H., Seilmeier, W., and Belit, H. D. 1980. Vergleichende Untersuchungen uber partielle Aminosauresequenzen von Prolaminen und Glutelinen verschiedener. Gertreidearten. I. Protein fraktionierung nach Osborne. Z. Lebensm. Unters. Forsch. 170: 17–26.

    Article  CAS  Google Scholar 

  • Williams, K. T., and Bevenue, A. 1953. A note on the sugars in rice. Cereal Chem. 30: 267–269.

    CAS  Google Scholar 

  • Wisker, E., Feldheim, W., Pomeranz, Y., and Meuser, F. 1985. Dietary fiber in cereals. In Advances in Cereal Science and Technology, edited by Y. Pomeranz. St. Paul, MN: AACC, pp. 169–238.

    Google Scholar 

  • Yoshida, S., Ohnishi, Y., and Kitagishi, K. 1959. The chemical nature of silicon in rice plant. Soil Plant Food 5: 23–27.

    Article  Google Scholar 

  • Yoshida, S., Ohnishi, Y., and Kitagishi, K. 1962. Chemical forms, mobility and deposition of silicon in rice plants. Soil Sci. Plant Nutr. 8: 107–113.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Lumen, B.O., Chow, H. (1991). Nutritional Quality of Rice Endosperm. In: Luh, B.S. (eds) Rice. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3754-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3754-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3756-8

  • Online ISBN: 978-1-4899-3754-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics