Skip to main content

Abstract

As early as 1885 Bristowe recognized that damage to the cingulate gyrus resulted in neurological symptoms including impairment of cognitive function, emotional lability, depression, and loss of awareness. In his classic article, Papez (1937) commented that “the cingulate gyrus is the seat of dynamic vigilance by which emotional experiences are endowed with an emotional consciousness” and that damage to the cingulate gyrus results in a “loss of emotive dynamics.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolfsson R, Gottfries C, Roos B, Winblad B (1979): Changes in the brain catecholamines in patients with dementia of the Alzheimer type. Br J Psychiatry 135:216–223

    Google Scholar 

  • Ahlquist R (1948): A study of the adrenotropic receptors. Am J Physiol 153:586–600

    Google Scholar 

  • Amyes EW, Nielson J (1953): Bilateral anterior cingulate gyrus lesions. Bull Los Angeles Neurol Soc 18:48–51

    Google Scholar 

  • Andrade R, Nicoll R (1987): Pharmacologically distinct actions of serotonin on single pyramidal neurons of the rat hippocampus recorded in vitro. J Physiol (London) 394:99–124.

    Google Scholar 

  • Arai H, Kosaka H, Iizuka R (1984): Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J Neurochem 43:388–393.

    Google Scholar 

  • Arnsten AF, Goldman-Rakic P (1985): Alpha 2 adrenergic mechanisms in pre-frontal cortex associated with cognitive decline in aged non-human primates. Nature (London) 230:1273–1276

    Google Scholar 

  • Audet M, Doucet G, Oleskevich S, Descarries L (1988): Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex. J Comp Neurol 274:307–318

    Google Scholar 

  • Barnes J, Barnes N, Costall B, Naylor R, Tyers M (1989): 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature (London) 338:762–763

    Google Scholar 

  • Beani L, Clementina B, Giacomelli A, Tamberi F (1978): Noradrenaline inhibition of acetylcholine release from guinea pig brain. Eur J Pharmacol 48:179–193

    Google Scholar 

  • Beaudet A, Descarries L (1976): Quantitative data on serotonin nerve terminals in adult rat neocortex. Brain Res 111:301–309

    Google Scholar 

  • Beauregard M, Ferron A, Descarries L (1989): Possible existence of a presynaptic positive feedback mechanism enhancing dopamine transmission in the anterior cingulate cortex of the rat. Experientia 45:888–892

    Google Scholar 

  • Beauregard M, Ferron A, Descarries L (1991): Comparative analysis of the effects of intopho-retically applied dopamine in different regions of the rat brain with special reference to the cingulate cortex. Synapse 9:27–34

    Google Scholar 

  • Bench CJ, Scott LC, Brown R, Friston K, Frackowiak S, Dolan R (1991): Regional cerebral blood flow in depression determined by positron emmission tomography. J Cereb Blood Flow Metab 11: s 564

    Google Scholar 

  • Berger B, Verney C, Alvarez C, Vigny A, Helle K (1985): New dopaminergic terminal fields in the motor, visual (area 18b), and retrosplenial cortex in the young and adult rat. Neuroscience 15:983–998

    Google Scholar 

  • Bergman J, Madras B, Spealman R (1991): Behavioral effects of D1 and D2 receptor antagonists in squirrel monkeys. J Pharmacol Exp Ther 258:910–917

    Google Scholar 

  • Berridge C, Foote S (1991): Effects of locus coeruleus activation on electroencephalogra-phic activity in neocortex and hippocampus. J Neurosci 11:3135–3145

    Google Scholar 

  • Berry-Kravis E, Dawson G (1985): Role of gan-gliosides in regulating an adenylate cyclase-linked 5-hydroxytryptamine (5-HT) receptor. J Neurochem 45:1739–1747

    Google Scholar 

  • Bigl V, Woolf N, Butcher L (1982): Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8:727–749

    Google Scholar 

  • Bloom FE (1979): Chemical integrative processes in the central nervous system. In: The Neurosciences: Fourth Study Program, Schmitt FO, Worden FG, eds. Cambridge, MA: MIT Press, pp 51–58

    Google Scholar 

  • Blue M, Yagaloff K, Mamounas L, Hartig P, Molliver M (1988): Correspondence between 5-HT2 receptors and serotoninergic axons in rat neocortex. Brain Res 453:315–320

    Google Scholar 

  • Bobillier P, Seguin S, Deguerece A, Lewis B, Pujol J (1979): The efferent connections of the nucleus raphe centralis superior in the rat revealed by radioautography. Brain Res 166:1–8

    Google Scholar 

  • Bobker D, Williams J (1989): Serotonin agonists inhibit synaptic potentials in the rat locus ceruleus in vitro via 5-HT1A and 5-HT1B receptors. J Pharmacol Exp Ther 250:37–45

    Google Scholar 

  • Bondereff W, Mountjoy C, Roth M (1982): Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32:164–173

    Google Scholar 

  • Bouhelal R, Smounya L, Bockaert J (1988): 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Eur J Pharmacol 151:189–196

    Google Scholar 

  • Bouthenet ML, Martres M, Sales N, Schwartz J-C (1987): A detailed mapping of dopamine D2 receptors in the rat CNS by autoradiography with iodosulpiride. Neuroscience 20: 117–155

    Google Scholar 

  • Bowen D, Allen S, Benton J, Goodhardt M, Haan E, Palmer A (1983): Biochemical assessment of serotoninergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 41:266–272

    Google Scholar 

  • Brady L, Barrett J (1985): Effects of serotonin receptor antagonists on punished responding maintained by stimulus shock termination or food presentation in squirrel monkeys. J Pharmacol Exp Ther 234:106–112

    Google Scholar 

  • Bristowe J (1885): Cases of tumor of the corpus callosum. Brain 7:315–333

    Google Scholar 

  • Brodai P, Bjaalie JG, Aas J-E (1991): Organization of cingulo-ponto-cerebellar connections in the cat. Anat Embryol 184:245–254

    Google Scholar 

  • Bunney B, Aghajanian G (1976): Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: Pharmacologic differentiation using microiontophoretic techniques. Life Sci 19:1783–1792

    Google Scholar 

  • Campbell MJ, Lewis D, Foote S, Morrison JH (1987): Distribution of choline acetyl transferase, serotonin, dopamine beta hydroxylase, tyrosine hydroxylase immunoreactive fibers in monkey primary auditory cortex. J Comp Neurol 261:209–220

    Google Scholar 

  • Camps M, Cortes R, Gueye B, Probst A, Palacios J (1989): Dopamine receptors in the human brain: Autoradiographic distribution of D2 sites. Neuroscience 28:275–290

    Google Scholar 

  • Charuchinda C, Supavilai P, Karobath M, Palacios J (1987): Dopamine D2 receptors in the rat brain: Autoradiographic visualization using a high affinity selective agonist ligand. J Neurosci 7:1352–1360

    Google Scholar 

  • Conn P, Sanders-Bush E (1984): Selective 5-HT2 antagonists inhibit serotonin stimulated phos-photidylinositol metabolism in cerebral cortex. Neuropharmacology 23:993–996

    Google Scholar 

  • Cortes R, Soriano E, Pazos A, Probst A, Palacios J (1989): Autoradiography of antidepressant binding sites in the human brain: Localization using imipramine and paroxetine. Neuroscience 27:473–496

    Google Scholar 

  • Crino P, Vogt BA, Volicer L, Wiley R (1990): Cellular localization of serotonin 1A, 1B, and uptake sites in cingulate cortex of the rat. J Pharmacol Exp Ther 252:651–656

    Google Scholar 

  • Critchley M (1930): The anterior cerebral artery and its syndromes. Brain 53:120–165

    Google Scholar 

  • Cross A, Crow T, Ferrier I, Johnson J (1986): The selectivity of the reduction of serotonin S2 receptors in Alzheimer type dementia. Neurobiol Aging 7:3–7

    Google Scholar 

  • Cross A, Crow T, Ferrier I, Johnson J, Bloom S, Corsellis J (1984a): Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43:1574–1581

    Google Scholar 

  • Cross A, Crow T, Johnson J, Joseph J, Perry, E (1983): Monoamine metabolism in senile dementia of the Alzheimer type. J Neurol Sci 60:383–392

    Google Scholar 

  • Cross A, Crow T, Johnson J, Perry E, Blessed G, Tomlinson, B (1984b): Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer type. J Neurol Sci 64:109–117

    Google Scholar 

  • Curcio C, Kemper T (1984): Nucleus raphe dorsalis in dementia of the Alzheimer type: Neurofibrillary changes and neuronal packing density. J Pathol Exp Neurol 43:359–368

    Google Scholar 

  • Davies M, Deisz R, Prince D, Peroutka S (1987): Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res 423:347–352

    Google Scholar 

  • Dawson T, Gehlert D, McCabe R, Barnett A, Wamsley J (1986): D-1 dopamine receptors in the rat brain: A quantitative autoradiographic analysis. J Neurosci 6:2352–2365

    Google Scholar 

  • Decker M, Gallagher M (1987): Scopoloamine disruption of radial arm maze performance: Modification by noradrenergic depletion. Brain Res 417:59–69

    Google Scholar 

  • Decker M, McGaugh J (1989): Effects of concurrent manipulations of cholinergic and noradrenergic function on learning and retention in mice. Brain Res 477:29–37

    Google Scholar 

  • de Montigny C, Blier P, Chaput Y (1984): Electrophysiologically identified serotonin receptors in the rat CNS. Neuropharmacology 23:1511–1520

    Google Scholar 

  • DeSouza E, Kuyatt B (1987): Autoradiographic localization of [3H] paroxetine labelled serotonin uptake sites in rat brain. Synapse 1:488–496

    Google Scholar 

  • DeVivo M, Maayani S (1986): Characterization of the 5-hydroxytryptamine-1A receptor mediated inhibition of forskolin stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther 238:248–253

    Google Scholar 

  • Dewar K, Reader T, Grondin L, Descarries L (1991): Paroxetine binding and serotonin content of rat and rabbit cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region. Synapse 9:14–26

    Google Scholar 

  • Domesick V (1969): Projections from the cingulate cortex in the rat. Brain Res 12:296–320

    Google Scholar 

  • Drachman D, Levitt L (1974): Human memory and the cholinergic system: A relationship to aging? Arch Neurol (Chicago) 30:113–121

    Google Scholar 

  • Edwards J (1991): Effects of 5-HT3 agonists on phosphotidylinositol turnover in fronto-cingulate cortex. J Pharmacol Exp Ther 256:1025–1032

    Google Scholar 

  • Engel G, Gothert M, Hoyer D, Schlicker E, Hillenbrand K (1986): Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) auto-receptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedebergs Arch Pharmacol 332:1–7

    Google Scholar 

  • Flicker C, Geyer M (1982): Behavior during hip-pocampal microinfusions. Norepinephrine and diversive exploration. Brain Res Rev 4:79–103

    Google Scholar 

  • Flood J, Cherkin A (1987): Fluoxetine enhances memory processes in mice. Psychopharmacology 93:36–43

    Google Scholar 

  • Folz E, White L (1962): Pain relief by frontal cingulotomy. J Neurosurg 19:89–100

    Google Scholar 

  • Foote SL, Aston-Jones G, Bloom FE (1980): Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci USA 77:3033–3037

    Google Scholar 

  • Foote SL, Morrison JH (1987): Extrathalamic modulation of cortical function. Annu Rev Neurosci 10:67–95

    Google Scholar 

  • Gabriel M, Foster K, Orona E, Saltwick S, Stanton M (1980): Neuronal activity of the cingulate cortex, anteroventral thalamus, and hippocampal formation in discriminative conditioning: Encoding and extraction of the significance of conditional stimuli. Prog Psychobiol Physiol Psychol 9:125–231

    Google Scholar 

  • Gabriel M, Lambert R, Foster K, Orona E, Sparenborg S, Maiorca R (1983): Anterior thalamic lesions and neuronal activity in the cingulate gulate and retrosplenial cortices during discriminitive avoidance behavior in rabbits. Behav Neurosci 97:675–696

    Google Scholar 

  • Gabriel M, Miller J, Saltwick S (1977): Unit activity in cingulate cortex and anteroventral thalamus of the rabbit during differential conditioning and reversal. J Comp Physiol Psychol 91:423–433

    Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Henry, JP (1989): Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine beta hydroxylase. J Comp Neurol 279:249–271

    Google Scholar 

  • Gothert M, Schlicker E (1982): Autoreceptor mediated inhibition of 5-HT release from rat brain cortex slices by analogues of 5-HT. Life Sci 32:1183–1191

    Google Scholar 

  • Gottfries C, Adolfsson R, Aquilonious S, Carlsson A, Eckernas S (1983): Biochemical changes in dementia disorders of the Alzheimer type (AD/SDAT). Neurobiol Aging 4:261–271

    Google Scholar 

  • Grossman M, Reivich M, Alves W (1990): Defining a cerebral network that subserves picture comprehension using PET activation techniques. Ann Neurol 28:221

    Google Scholar 

  • Habert E, Graham D, Tahraoui L, Claustre Y, Langer S (1985): Characterization of [3Hparoxetine binding to rat cortical membranes. Eur J Pharmacol 118:107–114

    Google Scholar 

  • Herrick-Davis K, Titeler M, Leonhardt S, Struble R, Price D (1988): Serotonin 5-HT1D receptors in the human prefrontal corex and caudate: Interaction with a GTP binding protein. J Neurochem 51:1906–1912

    Google Scholar 

  • Heuring R, Peroutka S (1987): Characterization of a novel [3H] 5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci 7:794–803

    Google Scholar 

  • Hirano A, Zimmerman H (1962): Alzheimer’s neurofibrillary changes: A topographic study. Arch Neurol (Chicago) 7:227–242

    Google Scholar 

  • Hornung JP, Fritschy JM (1988): Serotoninergic system in the brainstem of the marmoset: A combined immunocytochemical and three-dimension reconstruction study. J Comp Neurol 270:471–487

    Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios J (1986): Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5HT1A recognition sites. Apparent absence of 5HT1B recognition sites. Brain Res 376:85–96

    Google Scholar 

  • Hytel J (1982): Citalopram: Basic and clinical studies. Prog Neuro-Psychopharmacol Biol Psychiatry 6:275–336

    Google Scholar 

  • Iorio L, Barnett A, Leitz F, Houser V, Korduba C (1983): SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther 226:462–468

    Google Scholar 

  • Ishii I (1966): Distribution of Alzheimer’s neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathol 6:181–187

    Google Scholar 

  • Itel TM, Itel KZ (1983): Central mechanisms of Clonidine and propranolol in man: Quantitative pharmaco-EEG with antihypertensive compounds. Chest 83:411–416

    Google Scholar 

  • Janer KW, Pardo JV (1991): Deficits in selective attention following bilateral anterior cingulotomy. J Cogn Neurosci 3:232–241

    Google Scholar 

  • Jones B, Moore R (1977): Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res 127:23–53

    Google Scholar 

  • Jones L, Gauger L, Davis J (1985): Anatomy of alpha-1 adrenergic receptors: In vitro autoradiography with [125-I]-HEAT. J Comp Neurol 231:190–208

    Google Scholar 

  • Jones R, Olpe H-R (1984): Monoaminergic modulation of the sensitivity of neurones in the cingulate cortex to iontophoretically applied substance P. Brain Res 311:297–305

    Google Scholar 

  • Jürgens U, Pratt R (1979): The cingular vocalization pathway in the squirrel monkey. Exp Brain Res 34:499–510

    Google Scholar 

  • Kaitz S, Robertson R (1981): Thalamic connections with limbic cortex. II. Corticothalamic projections. J Comp Neurol 195:527–545

    Google Scholar 

  • Kalaria R, Andorn A, Tabaton M, Whitehouse P, Harik S, Unnerstall J (1989): Adrenergic receptors in aging and Alzheimer’s disease: Increased beta-2 receptors in prefrontal cortex and hippocampus. J Neurochem 53:1772–1781

    Google Scholar 

  • Kebabian J, Came D (1979): Multiple receptors for dopamine. Nature (London) 277:93–96

    Google Scholar 

  • Kendall D, Nahorski S (1985): 5-Hydroxy-tryptamine stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacologic characterization and effects of antidepressants. J Pharmacol Exp Ther 233:473–479

    Google Scholar 

  • Kennard M (1955): The cingulate gyrus in relation to consciousness. J Nerv Ment Dis 121:34–39

    Google Scholar 

  • Kilts C, Anderson C, Ely T, Nishita J (1987): Absence of synthesis modulating nerve terminal autoreceptors on mesoamygdaloid and other mesolimbic dopamine neuronal populations. J Neurosci 7:3961–3975

    Google Scholar 

  • Kohler C, Lorens SA (1978): Open field activity and avoidance behavior following serotonin depletion: A comparison of the effects of pa-rachlorophenylalanine and electrolytic midbrain raphe lesions. Pharmacol Biochem Behav 8:223–233

    Google Scholar 

  • Koslow J, Maas J, Bowden C, Davis J, Hanin I (1983): CSF and urinary biogenic amines and metabolites in depression and mania: A controlled univariate analysis. Arch Gen Psychiatry 40:999–1010

    Google Scholar 

  • Kosofsky B, Molliver M (1987): The serotonergic innervation of cerebral cortex: Different classes of axon terminals arise from dorsal and median raphe raphe nuclei. Synapse 1:153–168

    Google Scholar 

  • Kuhar M, Aghajanian G (1972): Selective accumulation of serotonin by nerve terminals of raphe neurons. Nature (London) 241:187–189

    Google Scholar 

  • Kwon S, Nadeau S, Heilman K (1990): Retro-splenial cortex: Possible role in habituation of the orienting response. J Neurosci 10:3559–3563

    Google Scholar 

  • Lands A, Arnold A, McAuliff J, Luduena F, Brown T (1967): Differentiation of receptor systems activated by sympathomimetic amines. Nature (London) 214:597–598

    Google Scholar 

  • Levin B (1984): Axonal transport and presynaptic location of alpha-2 adrenoceptors in locus coeruleus neurons. Brain Res 187:143–154

    Google Scholar 

  • Lewis D, Morrison J (1989): Noradrenergic innervationof monkeyprefrontal cortex: Adopaminebeta-hydroxylase immunohistochemical study. J Comp Neurol 282:317–330

    Google Scholar 

  • Lidov H, Grzanna R, Molliver M (1980): The serotonin innervation of the cerebral cortex in the rat: An immunohistochemical analysis. Neuroscience 5:207–227

    Google Scholar 

  • Lindvall O, Björklund A, Divac I (1978): Organization of catecholamine neurons projecting to the frontal cortex in the rat. Brain Res 142:1–24

    Google Scholar 

  • Lubar J, Perachio A (1965): One-way and two-way learning and transfer of an active avoidance response in normal and cingulotomized cats. J Comp Physiol Psychol 60:46–52

    Google Scholar 

  • Luppino G, Matelli M, Camarda R, Gallese V, Rizzolati G (1991): Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey. J Comp Neurol 311:463–482

    Google Scholar 

  • Mann JJ, Stanley M, McBride A, McEwen B (1986): Increased serotonin2 and beta adrenergic receptor binding in the frontal cortex of suicide victims. Arch Gen Psychiatry 43:954–959

    Google Scholar 

  • Mansour A, Meador-Woodruff JH, Bunzow JR, Civelli O, Akil H, Watson S (1990): Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: An in situ hybridization receptor autoradiographic analysis. J Neurosci 10:2587–2600

    Google Scholar 

  • Mansour A, Meador-Woodruff JH, Zhiou Q, Civelli O, Akil H, Watson S (1992): A comparison of Dl receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience 46:959–971

    Google Scholar 

  • Marcusson J, Morgan D, Winblad B, Finch C (1984a): Serotonin-2 binding sites in human frontal cortex and hippocampus: Selective loss of S-2A sites with age. Brain Res 311:51–56

    Google Scholar 

  • Marcusson J, Oreland L, Winblad B (1984b): Effect of age on human brain serotonin (S-l) binding sites. J Neurochem 43:1699–1705

    Google Scholar 

  • Maura G, Gemignani A, Raiteri M (1982): Noradrenaline inhibits central serotonin release through alpha-2 adrenoceptors located on serotonergic nerve terminals. Naunyn-Schmiedebergs Arch Pharmacol 320:272–274

    Google Scholar 

  • Maura G, Pittaluga A, Ricchetti A, Raiteri M (1984): Noradrenaline uptake inhibitors do not reduce the presynaptic action of clonodine on noradrenaline release in superfused synaptosomes. Naunyn-Schmiedebergs Arch Pharmacol 327:826–829

    Google Scholar 

  • Maura G, Raiteri M (1986): Cholinergic terminals in rat hippocampus posses 5-HT1B receptors mediating inhibition of acetylcholine release. Eur J Pharmacol 129:333–337

    Google Scholar 

  • Maura G, Roccatagliata E, Raiteri M (1986): Serotonin autoreceptor in rat hippocampus: Pharmacological characterization as a subtype of the 5-HT1 receptor. Naunyn-Schmiedebergs Arch Pharmacol 334:323–326

    Google Scholar 

  • McCormick D, Pape H-C (1990): Noradrenergic and serotonergic modulation of a hyperpolar-ization-activated cation current in thalamic relay neurons. J Physiol (London) 431:319–342

    Google Scholar 

  • Mellerup E, Plenge P (1986): High affinity binding of [3H]paroxetine and [3H]imipramine to rat neuronal membranes. Psychopharmacology 89:436–439

    Google Scholar 

  • Miach P, Dausse J, Meyer P (1978): Direct biochemical demonstration of two types of alphaadrenoceptor in rat brain. Nature (London) 274:492–494

    Google Scholar 

  • Middlemiss D (1984): The putative 5-HT1 receptor agonist, RU 24969, inhibits the efflux of 5-hydroxytryptamine from rat frontal cortical slices by stimulation of the 5-HT autoreceptor. J Pharm Pharmacol 37:434–437

    Google Scholar 

  • Moore R, Halaris A, Jones B (1978): Serotonin neurons of the midbrain raphe: Ascending projections. J Comp Neurol 180:417–438

    Google Scholar 

  • Morrison J, Foote S (1986): Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys. J Comp Neurol 243:117–138

    Google Scholar 

  • Morrison J, Foote S, Molliver M, Bloom F, Lidov H (1982a): Noradrenergic and serotoninergic fibers innervate complementary layers in monkey visual cortex: An immunohistochemical study. Proc Natl Acad Sci USA 79:2401–2405

    Google Scholar 

  • Morrison J, Foote S, O’Connor D, Bloom F (1982b): Laminar, tangential, and regional organization of the noradrenergic innervation of monkey cortex: Dopamine-beta-hydroxylase immunohistochemistry. Brain Res Bull 9:309–319

    Google Scholar 

  • Morrison J, Molliver M, Grzanna R, Coyle J (1979): Noradrenergic innervation in three regions of medial cortex: An immunofluorescence characterization. Brain Res Bull 4:849–857

    Google Scholar 

  • Mulligan K, Tork I (1988): Serotoninergic innervation of the cat cerebral cortex. J Comp Neurol 270:86–110

    Google Scholar 

  • Murray E, Davidson M, Gaffan D, Olton D, Suomi S (1989): Effect of fornix transection and cingulate cortical ablation on spatial memory in rhesus monkeys. Exp Brain Res 74:173–186

    Google Scholar 

  • Nilsson OG, Strecker RE, Daszuta A, Björklund A (1988): Combined cholinergic and serotoninergic denervation of the forebrain produces severe deficits in a spatial learning task in the rat. Brain Res 453:235–246

    Google Scholar 

  • O’Conner SE, Brown RA (1982): The pharmacology of sulpiride—a dopamine receptor antagonist. Gen Pharmacol 13:185–193

    Google Scholar 

  • Offord S, Ordway G, Frazer A (1988): Application of [125I] iodocyanopindolol to measure 5-hydroxytryptamine 1B receptors in the brain of the rat. J Pharmacol Exp Ther 244:144–153

    Google Scholar 

  • Ögren SO (1985): Evidence for a role of brain serotoninergic transmission in avoidance learning. Acta Physiol Scand 544:1–71

    Google Scholar 

  • Ögren SO, Johansson C (1985): Separation of the associative and non-associative effects of brain serotonin released by p-chloroamphetamine: Dissociable serotonergic involvement in avoidance learning, pain, and motor function. Psychopharmacology 86:112–126

    Google Scholar 

  • Olpe H-R (1981): The cortical projection of the raphe nucleus: Some electrophysiological and pharmacological properties. Brain Res 216:61–71

    Google Scholar 

  • Pandya D, Van Hoesen G, Mesulam, M-M (1981): Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319–330

    Google Scholar 

  • Papez JW (1937): A proposed mechanism of emotion. Arch Neurol Psychiatry 38:725–744

    Google Scholar 

  • Pazos A, Engel G, Palacios J (1985a): Betaadrenoceptor blocking agents recognize a sub-population of serotonin receptors in brain. Brain Res 343:403–408

    Google Scholar 

  • Pazos A, Cortes R, Palacios J (1985b): Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249

    Google Scholar 

  • Pazos A, Palacios J (1985): Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230

    Google Scholar 

  • Pazos A, Probst A, Palacios J (1987a): Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21:97–122

    Google Scholar 

  • Pazos A, Probst A, Palacios J (1987b): Serotonin receptors in the human brain. IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139

    Google Scholar 

  • Perry E, Marshall E, Blessed G (1983): Decreased imipramine binding in the brains of patients with depression. Br J Psychiatry 142:188–192

    Google Scholar 

  • Quirion R, Richard J (1987): Differential effects of selective lesions of cholinergic and dopaminergic neurons on serotonin type-1 receptors in rat brain. Synapse 1:124–130

    Google Scholar 

  • Quirion R, Richard J, Dam T (1985): Evidence for the existence of serotonin type-2 receptors on cholinergic terminals in rat cortex. Brain Res 333:345–349

    Google Scholar 

  • Rainbow T, Parsons B, Wolfe B (1984): Quantitative autoradiography of beta-1 and beta-1 adrenergic receptors in rat brain. Proc Natl Acad Sci USA 81:1585–1589

    Google Scholar 

  • Reynolds GP, Arnold L, Rossor M, Iversen L, Mountjoy C, Roth M (1984): Reduced binding of [3H]ketanserin to cortical 5-HT2 receptors in senile dementia of the Alzheimer type. Neurosci Lett 44:47–51

    Google Scholar 

  • Richter-Levin G, Segal M (1989a): Spatial performance is severely impaired in rats with combined reduction of serotoninergic and cholinergic transmission. Brain Res 477:404–407

    Google Scholar 

  • Richter-Levin G, Segal M (1989b): Raphe cells grafted into the hippocampus can ameliorate spatial memory deficits in rats with combined serotoninergic/cholinergic deficiencies. Brain Res 479:19–31

    Google Scholar 

  • Royce G (1982): Laminar origin of cortical neurons which project upon the caudate nucleus: A horseradish peroxidase investigation in the cat. J Comp Neurol 205:8–29

    Google Scholar 

  • Sachar E, Baron M (1979): The biology of the affective disorders. Annu Rev Neurosci 2:205–218

    Google Scholar 

  • Scatton B, Dubois A (1985): Autoradiographic localization of D1 dopamine receptors in rat brain with SKF 38393. Eur J Pharmacol 111:145–147

    Google Scholar 

  • Schildkraut J (1965): The catecholamine hypothesis of affective disorders: A review of supporting evidence. Am J Psychiatry 122:509–522

    Google Scholar 

  • Schlicker E, Brandt F, Classen K, Gothert M (1985): Serotonin release in human cerebral cortex and its modulation via serotonin receptors. Brain Res 331:337–341

    Google Scholar 

  • Sealfon SC, Janssen W, Snyder L, Huntley G, Shiffman Y, Hof P, Prikhozhan A, Mossison J (1991): Laminar distribution of dopamine receptor subtype mRNAs in the macacque anterior cingulate cortex. Sci Neurosci Abstr 17:1347

    Google Scholar 

  • Seguela P, Watkins K, Descarries L (1989): Ultrastructural relationships of serotonin axon terminals in the cerebral cortex of the adult rat. J Comp Neurol 289:129–142

    Google Scholar 

  • Shima K, Aya K, Mushiake H, Inase M, Aizawa H, Tanji J (1991): Two movement related foci in the primate cingulate cortex observed in signal triggered and self-paced forelimb movements. J Neurophysiol 65:188–202

    Google Scholar 

  • Smith W (1945): The functional significance of the rostral cingular cortex as revealed by its responses to electrical excitation. J Neurophysiol 8:241–255

    Google Scholar 

  • Sokoloff P, Giros B, Matres M-P, Bouthenet M-L, Schwartz J-C (1990): Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature (London) 347:146–151

    Google Scholar 

  • Sprouse J, Aghajanian G (1987): Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1:3–9

    Google Scholar 

  • Starke K (1977): Regulation of noradrenaline release by presynaptic receptor systems. Rev Psychol Biochem Pharmacol 77:1–124

    Google Scholar 

  • Steinfels G, Heym J, Strecker R, Jacobs B (1983): Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258:217–228

    Google Scholar 

  • Summers WK, Majovski L, Marsh G, Tachiki K, Kling A (1986): Oral tetrahydroaminoacridine in long-term treatment of senile dementia. N Engl J Med 315:1241–1245

    Google Scholar 

  • Sutherland R, Whishaw I, Kolb B (1988): Contributions of cingulate cortex to two forms of spatial learning and memory. J Neurosci 8:1863–1872

    Google Scholar 

  • Tomlinson B, Irving D, Blessed G (1981): Cell loss in the locus coerulus in senile dementia of the Alzheimer type. J Neurol Sci 49:419–428

    Google Scholar 

  • Trulson M, Jacobs B (1979): Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal. Brain Res 163:135–150

    Google Scholar 

  • Trulson M, Trulson V (1982): Differential effects of phasic auditory and visual stimuli on serotoninergic neurons in the nucleus raphe dorsalis and pallidus in freely moving cats. Neurosci Lett 32:137–142

    Google Scholar 

  • U’Prichard D, Reisine T, Mason S, Fibiger H, Yamamura H (1980): Modulation of rat brain alpha and beta adrenergic receptor populations by lesions of the dorsal noradrenergic bundle. Brain Res 187:143–154

    Google Scholar 

  • Valenstein E, Bowers D, Verfaule M, Watson R, Day A, Heilman K (1987): Retrosplenial amnesia. Brain 110:1631–1636

    Google Scholar 

  • Vanderwolf CH (1987): Near-total loss of “learning” and “memory” as a result of combined cholinergic and serotonergic blockade in the rat. Behav Brain Res 23:43–57

    Google Scholar 

  • Vanderwolf CH (1988): Cerebral activity and behavior: Control by central cholinergic and serotoninergic systems. Int Rev Neurobiol 30:225–340

    Google Scholar 

  • Vanderwolf CH (1989): A general role for serotonin in the control of behavior: Studies with intracerebral 5,7-dihydroxytryptamine. Brain Res 504:192–198

    Google Scholar 

  • Vanderwolf CH, Baker GB (1986): Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hip-pocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res 374:342–256

    Google Scholar 

  • Van Praag H (1978): Amine hypothesis of affective disorders. In: Handbook of Psychopharmacology, Iversen LL, Iversen S, Snyder S, eds. New York: Plenum, Vol 13, pp 187–297

    Google Scholar 

  • Vizi E (1980): Modulation of cortical release of acetylcholine by noradrenaline released from nerves arising from the rat locus coeruleus. Neuroscience 5:2139–2144

    Google Scholar 

  • Vogt BA (1985): Cingulate cortex. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum, Vol 4

    Google Scholar 

  • Vogt B, Crino P, Jensen E (1992): Multiple heteroreceptors on limbic thalamic axons: M2 acetylcholine, serotonin1B, β-adrenoceptors, μ-opioid, and neurotensin. Synapse 10:44–53

    Google Scholar 

  • Vogt B, Crino P, Volicer L (1991a): Laminar alterations in gamma-aminobutyric acid-A, muscarinic, and beta-adrenoceptors and neuron degeneration in cingulate cortex in Alzheimer’s disease. J Neurochem 57:282–290

    Google Scholar 

  • Vogt BA, Miller MW (1983): Cortical connections between rat cingulate cortex and visual, motor, and post-subicular cortices. J Comp Neurol 216:192–210

    Google Scholar 

  • Vogt BA, Pandya D, Rosene D (1987): Cingulate cortex of the Rhesus monkey. I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270

    Google Scholar 

  • Vogt BA, Peters A (1981): Form and distribution of neurons in rat cingulate cortex: Areas 32,24, and 29. J Comp Neurol 195:603–625

    Google Scholar 

  • Vogt BA, Plager M, Crino P, Bird E (1990): Laminar distributions of muscarinic acetylcholine, serotonin, GABA, and opioid receptors in human posterior cingulate cortex. Neuroscience 36:165–174

    Google Scholar 

  • Vogt BA, Rosene DL, Peters A (1981): Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat. J Comp Neurol 201:265–283

    Google Scholar 

  • Vogt BA, Van Hoesen G, Vogt L (1991b): Laminar distribution of neuron degeneration in posterior cingulate cortex in Alzheimer’s disease. Acta Neuropathol 80:581–589

    Google Scholar 

  • Volicer L, Direnfield LK, Langlais P, Freedman M, Bird E, Albert M (1985): Catecholamine metabolites and cyclic nucleotides in cerebrospinal fluid in dementia of the Alzheimer type. J Gerontol 40:708–713

    Google Scholar 

  • Waeber C, Dietl M, Hoyer D, Probst A, Palacios J (1988): Visualization of a novel serotonin recognition site (5-HT1D) in the human brain by autoradiography. Neurosci Lett 88:11–16

    Google Scholar 

  • Ward A (1948): The cingular gyrus: Area 24. J Neurophysiol 11:13–23

    Google Scholar 

  • Waterhouse B, Moises H, Woodward D (1981): Alpha receptor mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine. Neuropharmacology 20:907–920

    Google Scholar 

  • Watson R, Heilman K, Cauthen J, King F (1973): Neglect after cingulectomy. Neurology 23:1003–1007

    Google Scholar 

  • Wenk G, Hughey D, Boundy V, Kim A (1987): Neurotransmitters and memory: Role for cholinergic, serotonergic, and noradrenergic systems. Behav Neurosci 101:325–332

    Google Scholar 

  • Whitehouse PJ, Price DL, Clark A, Coyle J, DeLong M (1981): Alzheimer disease: Evidence for a selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–129

    Google Scholar 

  • Whitford GM (1986): Alzheimer’s disease and serotonin: A review. Neuropsychobiology 15:133–142

    Google Scholar 

  • Wiley R, Blessing W, Reis D (1982): Suicide transport: Destruction of neurons by retrograde transport of ricin, abrin, and modeccin. Science 216:889–890

    Google Scholar 

  • Wiley R, Stirpe F, Thorpe P, Oeltmann T (1989): Neuronotoxic effects of a monoclonal anti-Thy antibody (OX7) coupled to the ribosome inactivating protein, saporin, as studied by suicide transport experiments in the rat. Brain Res 505:44–54

    Google Scholar 

  • Wolf W, Kuhn D (1987): Uptake and release of tryptophan and serotonin: An HPLC method to study the flux of endogenous 5-hydroxy-indoles through synaptosomes. J Neurochem 46:61–67

    Google Scholar 

  • Zornetzer SF (1985): Catecholamine system involvement in age-related memory dysfunction. Ann NY Acad Sci 444:242–254

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crino, P.B., Morrison, J.H., Hof, P.R. (1993). Monoaminergic Innervation of Cingulate Cortex. In: Vogt, B.A., Gabriel, M. (eds) Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6704-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6704-6_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6706-0

  • Online ISBN: 978-1-4899-6704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics