Skip to main content

Perturbation Theory for Classical Hamiltonian Systems

  • Chapter
Scaling and Self-Similarity in Physics

Part of the book series: Progress in Physics ((PMP,volume 7))

Abstract

the relation between the Kolmogorov-Arnold-Moser theory of the non resonant motions in nearly integrable Hamiltonian systems and the renormalization group methods is pointed out. It is followed by a very detailed proof of a version of the KAM theorem based on dimensional estimates (in which no attention is paid to obtaining best constants).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Kolmogorov: Dokl. Akad. Nauk. 98, 527, 1954.

    Google Scholar 

  2. J. Moser: Nach. Akad. Wiss. Gottinger, II a, 1, 1962.

    Google Scholar 

  3. V. Arnold: Russ. Math. Surv.l8, n° 5, 9, 1963 and 18, n° 6, 85, 1963.

    Article  Google Scholar 

  4. J. Pöschel: “Ueber differenzierbare Faserungen invarianter Tori”, 1981, preprint, ETH-Zürich.

    Google Scholar 

  5. L. Chierchia, G. Gallavotti: “Smooth prime integrals for quasi-integrable Hamiltonian systems”, Il Nuovo Cimento, B67, 277, 1982.

    Article  Google Scholar 

  6. L. Kadanoff: Proc. Int. School of Physics, E. Fermi, Corso LI, ed. M. Green, Acad Press. N.Y., 1971.

    Google Scholar 

  7. L. Kadanoff: Physics 2, 263, 1966.

    Google Scholar 

  8. L. Kadanoff et Rev. Mod. Phys. 39, 395, 1967

    Article  Google Scholar 

  9. C. Di-Castro, G. Jona-Lasinio: Phys. Lett. 29A, 322, 1969

    Article  Google Scholar 

  10. C. Di-Castro, G. Jona-Lasinio, L. Peliti: Ann. Phys. 87, 327, 1974.

    Article  Google Scholar 

  11. K. Wilson: Phys. Rev. 179, 1499, 1969

    Article  Google Scholar 

  12. K. Wilson: Phys. Rev. B4, 3174, 1971

    Article  Google Scholar 

  13. K. Wilson: Phys. Rev. B4, 3l84, 1971.

    Google Scholar 

  14. K. Wilson, J. Kogut: Physics Reports 12, 75, 1974.

    Google Scholar 

  15. G. Gallavotti, A. Martin-Lof: Nuovo Cimento, 25B, 425, 1975.

    Article  Google Scholar 

  16. G. Gallavotti, M. Cassandro: Nuovo Cimento, 25B, 691, 1975.

    Article  Google Scholar 

  17. G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicoló; E. Olivieri E. Presutti, E. Scacciatelli; Comm. Math. Phys. 59, 143, 1978.

    Article  Google Scholar 

  18. R. Griffiths, R. Pearce; J. Stat. Phys. 20, 499, 1979.

    Article  Google Scholar 

  19. M. J. Westwater: Comm. Math. Phys. 72, 131, 1980.

    Article  Google Scholar 

  20. K. Gawedski, A. Kupiainen: Comm. Math. Phys. 77, 31, 1980.

    Article  Google Scholar 

  21. J. Fröhlich, T. Spencer: Comm. Math. Phys, 81, 527, 1981.

    Article  Google Scholar 

  22. M. Cassandro, E. Olivieri: Comm. Math. Phys. 80, 255, 1981.

    Article  Google Scholar 

  23. H. Poincaré: “Les Methodes Nouvelles de la Mécanique Celeste”, Gauthier-Villars, Paris, 1892, Vol. I, Ch. V, p. 233.

    Google Scholar 

  24. J. Moser: “Stable and random motions in dynamical systems”, Ann. Math. Studies, Princeton Univ. Press, 1973, Princeton.

    Google Scholar 

  25. For an interesting (non-rigorous) analysis see D. Escande, F. Doveil: J. Stat. Phys. 26, 257, 1981.

    Article  Google Scholar 

  26. D. Escande: “Renormalization approach to non integrable Hamiltonians”, Austin Workshop, March 198l, preprint Ecole Politecnique, Lab. Phys. Milieux Ionisés, Palaiseau, 1982

    Google Scholar 

  27. I learned some not too bad rigorous estimates in the forced pendulum case (considered in the above papers) from L. Chierchia (private communication).

    Google Scholar 

  28. H. Whitney: Trans. Am. Math. Soc. 36, 63, 1934.

    Article  Google Scholar 

  29. H. Rüssmann: Celestial Mech. 14, 33, 1976 and Comm. Pure Appl. Math. 29, 755, 1976, and Lecture Notes in Physics, Vol. 38, 1975, ed. J. Moser.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gallavotti, G. (1983). Perturbation Theory for Classical Hamiltonian Systems. In: Fröhlich, J. (eds) Scaling and Self-Similarity in Physics. Progress in Physics, vol 7. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6762-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6762-6_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6764-0

  • Online ISBN: 978-1-4899-6762-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics