Skip to main content

Mobility Database Management

  • Chapter
  • First Online:
Mobility Data Management and Exploration

Abstract

Adding temporal information, as an extra attribute in spatial databases, is not as straightforward as it may appear at a first glance. Time is not yet another dimension besides the two (or three, in some applications) spatial dimensions; monotonicity, for example, is a key difference. Could we adopt “as-is” methods and techniques for spatial databases, such as the ones outlined in Chap. 2? The answer is rather not, and this has been argued extensively in the spatiotemporal database literature. Therefore, novel data types (e.g., moving points), query processing techniques (e.g., “search for trajectories that ‘entered’ an area during a timeframe” or “search for trajectories that are ‘similar’ with respect to a reference trajectory”) and indexing methods (most probably, extensions of the well-known R-tree) have been explored. This chapter surveys the above aspects, which are essential components of a database system targeting at efficiently handing mobility data. In particular, interesting location- and mobility-aware queries are overviewed. Then, at physical level, selected indexing and query processing techniques that have been designed to efficiently support the above models and query types are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • de Almeida VT, Güting RH (2005a) Indexing the trajectories of moving objects in networks. GeoInformatica 9(1):33–60

    Article  Google Scholar 

  • de Almeida VT, Güting RH (2005b) Supporting uncertainty in moving objects in network databases. In: Proceedings of ACM-GIS

    Google Scholar 

  • Arumugam S, Jermaine C (2006) Closest-point-of-approach join for moving object histories. In: Proceedings of ICDE

    Google Scholar 

  • Bakalov P, Hadjieleftheriou M, Keogh E, Tsotras V (2005) Efficient trajectory joins using symbolic representations. In: Proceedings of MDM

    Google Scholar 

  • Chen L, Ozsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of SIGMOD

    Google Scholar 

  • Chen, S, Ooi BC, Tan KL, Nascimento MA (2008) ST2B-tree: a self-tunable spatio-temporal B+−tree index for moving objects. In: Proceedings of SIGMOD

    Google Scholar 

  • Chen H, Ku WS, Sun MT, Zimmermann R (2011) The partial sequenced route query with traveling rules in road networks. GeoInformatica 15(3):541–569

    Article  Google Scholar 

  • Choi Y, Chung C (2002) Selectivity estimation for spatio-temporal queries to moving objects. In: Proceedings of SIGMOD

    Google Scholar 

  • Cudre-Mauroux P, Wu E, Madden S (2010) TrajStore: an adaptive storage system for very large trajectory data sets. In: Proceedings of ICDE

    Google Scholar 

  • Düntgen C, Behr T, Güting RH (2009) BerlinMOD: a benchmark for moving object databases. The VLDB Journal 18(6):1335–1368

    Article  Google Scholar 

  • Egenhofer MJ, Herring J (1991) Categorizing binary topological relations between regions, lines and points in geographic databases. Technical Report, University of Maine

    Google Scholar 

  • Frentzos, E. (2003) Indexing objects moving on fixed networks. In: Proceedings of SSTD

    Google Scholar 

  • Frentzos E, Gratsias K, Theodoridis Y (2007a) Index-based most similar trajectory search. In: Proceedings of ICDE

    Google Scholar 

  • Frentzos E, Gratsias K, Pelekis N, Theodoridis Y (2007b) Algorithms for nearest neighbor search on moving object trajectories. Geoinformatica 11(2):159–193

    Article  Google Scholar 

  • Frentzos E, Gratsias K, Theodoridis Y (2007c) Towards the next-generation of location based services. In: Proceedings of W2GIS

    Google Scholar 

  • Frentzos E, Gratsias K, Theodoridis Y (2009) On the effect of location uncertainty in spatial querying. IEEE Transactions on Knowledge and Data Engineering 21(3):366–383

    Article  Google Scholar 

  • Frentzos E, Pelekis N, Giatrakos N, Theodoridis Y (2013) Cost models for nearest neighbor query processing over existentially uncertain spatial data. In: Proceedings of SSTD

    Google Scholar 

  • Gao Y, Zheng B, Lee WC, Chen G (2009) Continuous visible nearest neighbor queries. In: Proceedings of EDBT

    Google Scholar 

  • Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D (2002) Efficient indexing of spatiotemporal objects. In: Proceedings of EDBT

    Google Scholar 

  • Hadjieleftheriou M, Kollios G, Bakalov P, Tsotras VJ (2005) Complex spatio-temporal pattern queries. In: Proceedings of VLDB

    Google Scholar 

  • Jensen CS, Lin D, Ooi BC (2004) Query and update efficient B+-tree based indexing of moving objects. In: Proceedings of VLDB

    Google Scholar 

  • Jensen CS, Tiesyte D, Tradisauskas N (2006) The COST benchmark—comparison and evaluation of spatio-temporal indexes. In: Proceedings of DASFAA

    Google Scholar 

  • Li F, Cheng D, Hadjieleftheriou M, Kollios G (2005) On trip planning queries in spatial databases. In: Proceedings of SSTD

    Google Scholar 

  • Manolopoulos Y, Nanopoulos A, Papadopoulos AN, Theodoridis Y (2005) R-trees: theory and applications. Springer, New York

    Google Scholar 

  • Mokbel MF, Aref WG (2007) Location-aware query processing and optimization (invited tutorial). In: Proceedings of MDM

    Google Scholar 

  • Mouratidis K, Hadjieleftheriou M, Papadias D (2005) Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring. In: Proceedings of SIGMOD

    Google Scholar 

  • Mouratidis K, Yiu M, Papadias D, Mamoulis N (2006) Continuous nearest neighbor monitoring in road networks. In: Proceedings of VLDB

    Google Scholar 

  • Myllymaki J, Kaufman J (2003) DynaMark: a benchmark for dynamic spatial indexing. In: Proceedings of MDM

    Google Scholar 

  • Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network databases. In: Proceedings of VLDB

    Google Scholar 

  • Patel J, Yu JB, Kabra N, Tufte K, Nag B, Burger J, Hall N, Ramasamy K, Lueder R, Ellmann C, Kupsch J, Guo S, Larson J, De Witt D, Naughton J (1997) Building a scalable geo-spatial DBMS: technology, implementation, and evaluation. In: Proceedings of SIGMOD

    Google Scholar 

  • Pelanis M, Šaltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of moving objects. ACM Transactions on Database Systems 31(1):255–298

    Article  Google Scholar 

  • Pelekis N, Kopanakis I, Marketos G, Ntoutsi I, Andrienko G, Theodoridis Y (2007) Similarity search in trajectory databases. In: Proceedings of TIME

    Google Scholar 

  • Pfoser D, Jensen CS, Theodoridis Y (2000) Novel approaches to the indexing of moving object trajectories. In: Proceedings of VLDB

    Google Scholar 

  • Pfoser D (2002) Indexing the trajectories of moving objects. IEEE Data Engineering Bulletin 25(2):3–9

    Google Scholar 

  • Pfoser D, Jensen CS (2003) Indexing of network constrained moving objects. In: Proceedings of GIS

    Google Scholar 

  • Ray S, Simion B, Brown AD (2011) Jackpine: a benchmark to evaluate spatial database performance. In: Proceedings of ICDE

    Google Scholar 

  • Šaltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of continuously moving objects. In: Proceedings of SIGMOD

    Google Scholar 

  • Sandu Popa I, Zeitouni K, Oria V, Barth D, Vial S (2011) Indexing in-network trajectory flows. The VLDB Journal 20(5):643–669

    Article  Google Scholar 

  • Shahabi C, Koladhouzan M, Sharifzadeh M (2003) A road network embedding technique for k-nearest neighbor search in moving object databases. Geoinformatica 7(3):255–273

    Article  Google Scholar 

  • Sharifzadeh M, Kolahdouzan M, Shahabi C (2008) The optimal sequenced route query. The VLDB Journal 17(4):765–787

    Article  Google Scholar 

  • Sistla AP, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects. In: Proceedings of ICDE

    Google Scholar 

  • Song Z, Roussopoulos N (2001) K-nearest neighbor search for moving query point. In: Proceedings of SSTD

    Google Scholar 

  • Stonebraker M, Frew J, Gardels K, Meredith J (1993) The SEQUOIA 2000 storage benchmark. In: Proceedings of SIGMOD

    Google Scholar 

  • Tao Y, Papadias D (2001) MV3R-Tree: a spatio-temporal access method for timestamp and interval queries. In: Proceedings of VLDB

    Google Scholar 

  • Tao Y, Papadias D, Shen Q (2002a) Continuous nearest neighbor search. In: Proceedings of VLDB

    Google Scholar 

  • Tao Y, Papadias D, Zhang J (2002b) Cost models for overlapping and multi-version structures. ACM Transactions on Database Systems 27(3):299–342

    Article  Google Scholar 

  • Tao Y, Papadias D, Sun J (2003a) The TPR*-tree: an optimized spatio-temporal access method for predictive queries. In: Proceedings of VLDB

    Google Scholar 

  • Tao Y, Sun J, Papadias D (2003b) Analysis of predictive spatio-temporal queries. ACM Transactions on Database Systems 28(4):295–336

    Article  Google Scholar 

  • Tao Y, Cheng R, Xiao X, Ngai WK, Kao B, Prabhakar S (2005) Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: Proceedings of VLDB

    Google Scholar 

  • Theodoridis Y, Vazirgiannis M, Sellis TK (1996) Spatio-temporal indexing for large multimedia applications. In: Proceedings of ICMCS

    Google Scholar 

  • Theodoridis Y, Sellis TK, Papadopoulos AN, Manolopoulos Y (1998) Specifications for efficient indexing in spatio-temporal databases. In: Proceedings of SSDBM

    Google Scholar 

  • Theodoridis Y (2003) Ten benchmark database queries for location-based services. The Computer Journal 46(6):713–725

    Article  MATH  Google Scholar 

  • Tiakas E, Papadopoulos AN, Nanopoulos A, Manolopoulos Y, Stojanovic D, Djordjevic-Kajan S (2009) Searching for similar trajectories in spatial networks. Journal of Systems and Software 82(5):772–788

    Article  Google Scholar 

  • Trajcevski G, Wolfson O, Hinrichs K, Chamberlain S (2004) Managing uncertainty in moving objects databases. ACM Transactions on Database Systems 29(3):463–507

    Article  Google Scholar 

  • Vieira MR, Tsotras VJ (2011) Complex motion patterns for trajectories. In: Proceedings of ICDEW

    Google Scholar 

  • Vlachos M, Kollios G, Gunopulos D (2002) Discovering similar multidimensional trajectories. In: Proceedings of ICDE

    Google Scholar 

  • Yu X, Mehrotra S (2003) Capturing uncertainty in spatial queries over imprecise data. In: Proceedings of DEXA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pelekis, N., Theodoridis, Y. (2014). Mobility Database Management. In: Mobility Data Management and Exploration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0392-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0392-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0391-7

  • Online ISBN: 978-1-4939-0392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics