Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1220 Accesses

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

In recent decades, the market for wireless devices and networks has boosted an unprecedented growth. This growth has led to numerous wireless services and applications. Consequently, regulatory agencies in different countries thus allocate (licensed) chunks of spectrum to different wireless services.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atapattu, S., Jing, Y., Jiang, H., Tellambura, C. (2013) Relay selection and performance analysis in multiple-user networks. J on Selected Areas in Communications 31(8): 1517–1529.

    Article  Google Scholar 

  2. Cabric, D., Mishra, S. M., Brodersen, R. W. (2004) Implementation issues in spectrum sensing for cognitive radios. In: Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 7–10 Nov 2004.

    Google Scholar 

  3. Cattivelli, F. S., Sayed, A. H. (2011) Distributed detection over adaptive networks using diffusion adaptation. IEEE T Signal Processing 59(5): 1917–1932.

    Article  MathSciNet  Google Scholar 

  4. Chen, H. S., Gao, W., Daut, D. G. (2007) Signature based spectrum sensing algorithms for IEEE 802.22 WRAN. In: Proceedings of IEEE International Conference on Communications (ICC), Glasgow, 24–28 June 2007.

    Google Scholar 

  5. Connecting-America (2010) The National Broadband Plan. http://download.broadband.gov/plan/national-broadband-plan.pdf.

  6. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., Yoo, T., Song, O., Malladi, D. (2011) A survey on 3GPP heterogeneous networks. IEEE Wireless Communications 18(3): 10–21.

    Article  Google Scholar 

  7. De, P., Liang, Y. C. (2008) Blind spectrum sensing algorithms for cognitive radio networks. IEEE T on Vehicular Technology 57(5): 2834–2842.

    Article  Google Scholar 

  8. Doumi, T. L. (2006) Spectrum considerations for public safety in the United States. IEEE Communications M 44(1): 30–37.

    Article  Google Scholar 

  9. Fan, H., Meng, Q., Zhang, Y., Feng, W. (2006) Feature detection based on filter banks and higher order cumulants. In: Proceedings of IEEE International Conference on Information and Acquisition (ICIA), Colombo, 15–17 Dec 2006.

    Google Scholar 

  10. Gardner, W. A. (1988) Signal interception: a unifying theoretical framework for feature detection. IEEE T on Communications 36(8): 897–906.

    Article  Google Scholar 

  11. Gardner, W. A. (1991) Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing M 8(2): 14–36.

    Article  Google Scholar 

  12. Gesbert, D., Hanly, S., Huang, H., Shitz, S. S., Simeone, O., Yu, W. (2010) Multi-cell MIMO cooperative networks: A new look at interference. IEEE J on Selected Areas in Communications 28(9): 1380–1408.

    Article  Google Scholar 

  13. Haykin, S. (2005) Cognitive radio: Brain-empowered wireless communications. IEEE J on Selected Areas in Communications 23(2): 201–220.

    Article  Google Scholar 

  14. He, D. (2013) Chaotic stochastic resonance energy detection fusion used in cooperative spectrum sensing. IEEE T on Vehicular Technology 62(2): 620–627.

    Article  Google Scholar 

  15. He, D., Lin, Y., He, C., Jiang, L. (2010) A novel spectrum-sensing technique in cognitive radio based on stochastic resonance. IEEE T on Vehicular Technology 59(4): 1680–1688.

    Article  Google Scholar 

  16. IEEE1900.1-2008 IEEE standard definitions and concepts for dynamic spectrum access: Terminology relating to emerging wireless networks, system functionality, and spectrum management. http://standards.ieee.org/findstds/standard/1900.1-2008.html.

  17. Juang, B. H., Li, G. Y., Ma, J. (2009) Signal processing in cognitive radio. Proceedings of the IEEE 97(5): 805–823.

    Article  Google Scholar 

  18. Jun, W., Guangguo, B. (2010) Spectrum sensing in cognitive radios based on multiple cumulants. IEEE Signal Processing Letters 17(8): 723–726.

    Article  Google Scholar 

  19. Liang, Y. C., Zeng, Y., Peh, E. C. Y., Hoang, A. T. (2008) Sensing-throughput tradeoff for cognitive radio networks. IEEE T on Wireless Communications 7(4): 1326–1337.

    Article  Google Scholar 

  20. Liu, L., Chen, R., Geirhofer, S., Sayana, K., Shi, Z., Zhou, Y. (2012) Downlink MIMO in LTE-advanced: SU-MIMO vs. MU-MIMO. IEEE Communications M 50(2): 140–147.

    Article  Google Scholar 

  21. Lunden, J., Koivunen, V., Huttunen, A., Poor, H. V. (2009) Collaborative cyclostationary spectrum sensing for cognitive radio systems. IEEE T on Signal Processing 57(11): 4182–4195.

    Article  MathSciNet  Google Scholar 

  22. Mariani, A., Giorgetti, A., Chiani, M. (2011) SNR wall for energy detection with noise power estimation. In: Proceedings of IEEE International Conference on Communications (ICC), Kyoto, 5–9 June 2011.

    Google Scholar 

  23. Mitola, J., Maguire, G. Q. (1999) Cognitive radio: making software radios more personal. IEEE Personal Communications 6(4): 13–18.

    Article  Google Scholar 

  24. Naraghi-Pour, M., Ikuma, T. (2010) Autocorrelation-based spectrum sensing for cognitive radios. IEEE T on Vehicular Technology 59(2): 718–733.

    Article  Google Scholar 

  25. Nosratinia, A., Hunter, T. E., Hedayat, A. (2004) Cooperative communication in wireless networks. IEEE Communications M 42(10): 74–80.

    Article  Google Scholar 

  26. Pawelczak, P., Nolan, K., Doyle, L., Oh, S. W., Cabric, D. (2011) Cognitive radio: Ten years of experimentation and development. IEEE Communications M 49(3): 90–100.

    Article  Google Scholar 

  27. Perahia, E. (2008) IEEE 802.11n development: History, process, and technology. IEEE Communications M 46(7): 48–55.

    Article  Google Scholar 

  28. Ramprashad, S. A., Papadopoulos, H. C., Benjebbour, A., Kishiyama, Y., Jindal, N., Caire, G. (2011) Cooperative cellular networks using multi-user MIMO: Trade-offs, overheads, and interference control across architectures. IEEE Communications M 49(5): 70–77.

    Article  Google Scholar 

  29. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., Tufvesson, F. (2013) Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing M 30(1): 40–60.

    Article  Google Scholar 

  30. Sahai, A., Hoven, N., Tandra, R. (2004) Some fundamental limits on cognitive radio. In: Proceedings of 42nd Allerton Conference on Communication, Control, and Computing, Monticello, 29 Sept-1 Oct 2004.

    Google Scholar 

  31. Spencer, Q. H., Peel, C. B., Swindlehurst, A. L., Haardt, M. (2004) An introduction to the multi-user MIMO downlink. IEEE Communications M 42(10): 60–67.

    Article  Google Scholar 

  32. Sum, C. S., Harada, H., Kojima, F., Lu, L. (2013) An interference management protocol for multiple physical layers in IEEE 802.15.4g smart utility networks. IEEE Communications M 51(4): 84–91.

    Article  Google Scholar 

  33. Wang, H., Yang, E. H., Zhao, Z., Zhang, W. (2009) Spectrum sensing in cognitive radio using goodness of fit testing. IEEE T on Wireless Communications 8(11): 5427–5430.

    Article  Google Scholar 

  34. Wang, J., Ghosh, M., Challapali, K. (2011) Emerging cognitive radio applications: A survey. IEEE Communications M 49(3): 74–81.

    Article  Google Scholar 

  35. Xu, W., Zhang, J., Zhang, P., Tellambura, C. (2012) Outage probability of decode-and-forward cognitive relay in presence of primary user’s interference. IEEE Communications Letters 16(8): 1252–1255.

    Article  Google Scholar 

  36. Yucek, T., Arslan, H. (2009) A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys Tutorials 11(1): 116–130.

    Article  Google Scholar 

  37. Zeng, Y., Liang, Y. C., Hoang, A. T., Zhang, R. (2010) A review on spectrum sensing for cognitive radio: Challenges and solutions. EURASIP J on Advances in Signal Processing.

    Google Scholar 

  38. Zeng, Y., Liang, Y. C. (2009) Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE T on Communications 57(6): 1784–1793.

    Article  Google Scholar 

  39. Zhang, G., Wang, X., Liang, Y. C., Liu, J. (2010) Fast and robust spectrum sensing via Kolmogorov-Smirnov test. IEEE T on Communications 58(12): 3410–3416.

    Article  Google Scholar 

  40. Zhang, Y. L., Zhang, Q. Y., Melodia, T. (2010) A frequency-domain entropy-based detector for robust spectrum sensing in cognitive radio networks. IEEE Communications Letters 14(6): 533–535.

    Article  Google Scholar 

  41. Zhao, Q., Sadler, B. M. (2007) A survey of dynamic spectrum access. IEEE Signal Processing M 24(3): 79–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Atapattu, S., Tellambura, C., Jiang, H. (2014). Introduction. In: Energy Detection for Spectrum Sensing in Cognitive Radio. SpringerBriefs in Computer Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0494-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0494-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0493-8

  • Online ISBN: 978-1-4939-0494-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics