Skip to main content

The Significance of Nanoparticles in Medicine and Their Potential Application in Asthma

  • Chapter
  • First Online:
Molecular mechanisms and physiology of disease

Abstract

In an attempt to diagnose and treat highly complex and often heterogeneous diseases, research aims to utilise the modifiable properties of nano-sized particles. Properties such as size, shape, charge, hydrophobicity, and surface chemistry may be altered in order to facilitate and promote targeted cellular uptake. Following the first FDA-approved nanotherapeutic in 1990, more than 40 have been marketed worldwide with multiple nano-based medicines currently in development. Despite promising results, translation from pre-clinical experimentation to a clinical setting has proven to be difficult. In theory, nanoparticles are designed to possess characteristics which address many of the challenges associated with current clinical practices, such as low toxicity, stability, biocompatibility, favourable distribution within target tissue, and beneficial pharmacokinetic profiles. However, the complexity in the identification of the ideal properties which result in such characteristics is inherent of any therapeutic research, especially one as novel and relatively progressive. The development of nanoparticles for localised and systemic delivery to the lung in the treatment of respiratory disease also shows great potential. Due to the highly efficient clearance mechanisms in the lung, the ability for therapeutics to successfully deposit in the respiratory tract is a major challenge. Yet a correlation between exposure to environmentally and occupationally derived ultrafine (nano-sized) particles and respiratory disease has been established. By confirming that ultrafine particles have the capacity to deposit in parts of the lower respiratory tract to elicit a response albeit toxic, such epidemiological studies provide rationale for the development of nano-based pulmonary therapeutics. Although there has been little effort in designing nanoparticle systems for the treatment of lung disease including asthma, current research involves the development of nanocarriers for clinically relevant asthma drugs and antigen (for immunotherapy). With this, continued advancements in the understanding of human disease including asthma, coupled with knowledge regarding interactions between nanoparticle and cell/tissue systems, are required and provide the platform for nano-based therapeutic and diagnostic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham RT, Wiederrecht GJ (1996) Immunopharmacology of rapamycin. Annu Rev Immunol 14:483–510

    CAS  PubMed  Google Scholar 

  • Abramson M, Puy R, Weiner J (2010) Injection allergen immunotherapy for asthma. Cochrane Database Syst Rev (8):CD001186

    Google Scholar 

  • Akagi T, Kaneko T, Kida T, Akashi M (2005) Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier. J Control Release 108:226–236

    CAS  PubMed  Google Scholar 

  • Akagi T, Shima F, Akashi M (2011) Intracellular degradation and distribution of protein-encapsulated amphiphilic poly(amino acid) nanoparticles. Biomaterials 32:4959–4967

    CAS  PubMed  Google Scholar 

  • Akinc A, Zumbuehl A, Goldberg M, Leshchiner E, Busini V, Hossain N, Bacallado S, Nguyen D, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev K, Sah DWY, Soutschek JR, Toudjarska I, Vornlocher H-P, Zimmermann T, Langer R, Anderson D (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26:561–569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    CAS  PubMed  Google Scholar 

  • Alessandrini F, Schulz H, Takenaka S, Lentner B, Karg E, Behrendt H, Jakob T (2006) Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung. J Allergy Clin Immunol 117:824–830

    CAS  PubMed  Google Scholar 

  • Alessandrini F, Beck-Speier I, Krappmann D, Weichenmeier I, Takenaka S, Karg E, Kloo B, Schulz H, Jakob T, Mempel M, Behrendt H (2009) Role of oxidative stress in ultrafine particle-induced exacerbation of allergic lung inflammation. Am J Respir Crit Care Med 179:984–991

    CAS  PubMed  Google Scholar 

  • Alvaro M, Sancha J, Larramona H, Lucas JM, Mesa M, Tabar AI, Martinez-Cañavate A (2013) Allergen-specific immunotherapy: update on immunological mechanisms. Allergol Immunopathol 41(4):265–272

    CAS  Google Scholar 

  • Anderson PJ, Wilson JD, Hiller FC (1990) Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest 97:1115–1120

    CAS  PubMed  Google Scholar 

  • Arbes S, Gergen P, Vaughn B, Zeldin D (2007) Asthma cases attributable to atopy: results from the Third National Health and Nutrition Examination Survey. J Allergy Clin Immunol 120:1139–1145

    PubMed Central  PubMed  Google Scholar 

  • Barenholz Y (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134

    CAS  PubMed  Google Scholar 

  • Bhattacharya K, Davoren M, Boertz J, Schins R, Hoffmann E, Dopp E (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6:17

    PubMed Central  PubMed  Google Scholar 

  • Bhavna, Ahmad FJ, Mittal G, Jain GK, Malhotra G, Khar RK, Bhatnagar A (2009) Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur J Pharm Biopharm 71:282–291

    Google Scholar 

  • Bourzac K (2012) Nanotechnology: carrying drugs. Nature 491:S58–S60

    PubMed  Google Scholar 

  • Bousquet P, Calderón MS, Demoly P, Larenas DSE, Passalacqua G, Bachert C, Brozek J, Canonica GW, Casale T, Fonseca J, Dahl R, Durham S, Merk H, Worm M, Wahn U, Zuberbier T, Schünemann H, Bousquet J (2011) The Consolidated Standards of Reporting Trials (CONSORT) Statement applied to allergen-specific immunotherapy with inhalant allergens: a Global Allergy and Asthma European Network (GA(2)LEN) article. J Allergy Clin Immunol 127:49–56, 56.e1

    Google Scholar 

  • Broos S, Lundberg K, Akagi T, Kadowaki K, Akashi M, Greiff L, Borrebaeck CAK, Lindstedt M (2010) Immunomodulatory nanoparticles as adjuvants and allergen-delivery system to human dendritic cells: implications for specific immunotherapy. Vaccine 28:5075–5085

    CAS  PubMed  Google Scholar 

  • Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ (2014) Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med Res Rev 34(1):106–135

    CAS  PubMed  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chalupa D, Morrow P, Oberdörster G, Utell M, Frampton M (2004) Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 112:879–882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H-W, Su S-F, Chien C-T, Lin W-H, Yu S-L, Chou C-C, Chen JJW, Yang P-C (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20:2393–2395

    CAS  PubMed  Google Scholar 

  • Chen J, Dong X, Zhao J, Tang G (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol 29:330–337

    CAS  PubMed  Google Scholar 

  • Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin BR, Ming Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    CAS  PubMed  Google Scholar 

  • Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    CAS  PubMed  Google Scholar 

  • Choi H, Choi SR, Zhou R, Kung HF, Chen IW (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery1. Acad Radiol 11:996–1004

    PubMed  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    CAS  PubMed  Google Scholar 

  • Das S, Haddadi A, Veniamin S, Samuel J (2008) Delivery of rapamycin-loaded nanoparticle down regulates ICAM-1 expression and maintains an immunosuppressive profile in human CD34+ progenitor-derived dendritic cells. J Biomed Mater Res A 85A:983–992

    CAS  Google Scholar 

  • de Souza Reboucas J, Esparza I, Ferrer M, Sanz M, Irache J, Gamazo C (2012) Nanoparticle adjuvants and delivery systems for allergen immunotherapy. J Biomed Biotechnol 2012:474605

    PubMed Central  PubMed  Google Scholar 

  • Dimasi JA, Feldman L, Seckler A, Wilson A (2010) Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther 87:272–277

    CAS  PubMed  Google Scholar 

  • Durcan N, Murphy C, Cryan S-A (2008) Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol Pharm 5:559–566

    CAS  PubMed  Google Scholar 

  • Dykxhoorn DM, Lieberman J (2006) Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs. Annu Rev Biomed Eng 8:377–402

    CAS  PubMed  Google Scholar 

  • Frampton M, Utell M, Zareba W, Oberdörster GN, Cox C, Huang L-S, Morrow P, Lee FE, Chalupa D, Frasier L, Speers D, Stewart J (2004) Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst 126:1–47

    Google Scholar 

  • Gabizon A, Martin F (1997) Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Drugs 54:15–21

    CAS  PubMed  Google Scholar 

  • Gabizon A, Isacson R, Libson E, Kaufman B, Uziely B, Catane R, Ben Dor CG, Rabello E, Cass Y, Peretz T (1994) Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol 33:779–786

    CAS  PubMed  Google Scholar 

  • Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821

    CAS  PubMed  Google Scholar 

  • Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, Desimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105:11613–11618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan K, Chang H, Rolletschek A, Wobus AM (2001) Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res 305:171–176

    CAS  PubMed  Google Scholar 

  • Halder J, Kamat A, Landen C, Han L, Lutgendorf S, Lin Y, Merritt W, Jennings N, Chavez Reyes A, Coleman R, Gershenson D, Schmandt R, Cole S, Lopez Berestein G, Sood A (2006) Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 12:4916–4924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardy C, Lemasurier J, Belz G, Scalzo Inguanti K, Yao J, Xiang S, Kanellakis P, Bobik A, Strickland D, Rolland J, O’Hehir R, Plebanski M (2012) Inert 50-nm polystyrene nanoparticles that modify pulmonary dendritic cell function and inhibit allergic airway inflammation. J Immunol 188:1431–1441

    CAS  PubMed  Google Scholar 

  • Heesom KJ, Avison MB, Diggle TA, Denton RM (1998) Insulin-stimulated kinase from rat fat cells that phosphorylates initiation factor 4E-binding protein 1 on the rapamycin-insensitive site (serine-111). Biochem J 336:39–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heidel J, Davis M (2011) Clinical developments in nanotechnology for cancer therapy. Pharm Res 28:187–199

    CAS  PubMed  Google Scholar 

  • Hildemann LM, Klinedinst DB, Klouda GA, Currie LA, Cass GR (1994) Sources of urban contemporary carbon aerosol. Environ Sci Technol 28:1565–1576

    CAS  PubMed  Google Scholar 

  • Hou J, Zhang Q, Li X, Tang Y, Cao M-R, Bai F, Shi Q, Yang C-H, Kong D-L, Bai G (2011) Synthesis of novel folate conjugated fluorescent nanoparticles for tumor imaging. J Biomed Mater Res A 99A:684–689

    CAS  Google Scholar 

  • Hughes TJ, Pellizzari E, Little L, Sparacino C, Kolber A (1980) Ambient air pollutants: collection, chemical characterization and mutagenicity testing. Mutat Res 76:51–83

    CAS  PubMed  Google Scholar 

  • Hussain S, Vanoirbeek JAJ, Luyts K, de Vooght V, Verbeken E, Thomassen LCJ, Martens JA, Dinsdale D, Boland S, Marano F, Nemery B, Hoet PHM (2011) Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J 37:299–309

    CAS  PubMed  Google Scholar 

  • Hyafil F, Cornily J-C, Feig JE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA (2007) Noninvasive detection of macrophages using a nanoparticle contrast agent for computed tomography. Nat Med 13:636–641

    CAS  PubMed  Google Scholar 

  • Inoue K, Takano H, Yanagisawa R, Sakurai M, Abe S, Yoshino S, Yamaki K, Yoshikawa T (2007) Effects of nanoparticles on lung physiology in the presence or absence of antigen. Int J Immunopathol Pharmacol 20:737–744

    CAS  PubMed  Google Scholar 

  • Inoue K-I, Koike E, Yanagisawa R, Takano H (2008) Impact of diesel exhaust particles on Th2 response in the lung in asthmatic mice. J Clin Biochem Nutr 43:199–200

    PubMed Central  PubMed  Google Scholar 

  • Jennings LE, Long NJ (2009) ‘Two is better than one’-probes for dual-modality molecular imaging. Chem Commun (Camb) 28(24):3511–3524

    Google Scholar 

  • Jiang W, Kim BYS, Rutka J, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    CAS  PubMed  Google Scholar 

  • Jin H, Heller DA, Sharma R, Strano MS (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3:149–158

    CAS  PubMed  Google Scholar 

  • Kanai M, Imaizumi A, Otsuka Y, Sasaki H, Hashiguchi M, Tsujiko K, Matsumoto S, Ishiguro H, Chiba T (2012) Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol 69:65–70

    CAS  PubMed  Google Scholar 

  • Kauffmann F, Demenais F (2012) Gene-environment interactions in asthma and allergic diseases: challenges and perspectives. J Allergy Clin Immunol 130:1229–1240

    PubMed  Google Scholar 

  • Kaur G, Narang RK, Rath G, Goyal AK (2012) Advances in pulmonary delivery of nanoparticles. Artif Cells Blood Substit Immobil Biotechnol 40:75–96

    CAS  PubMed  Google Scholar 

  • Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665

    CAS  PubMed  Google Scholar 

  • Kim M-J, Ahn K, Park S-H, Kang H-J, Jang B, Oh S-J, Jeong Y-J, Heo J-I, Suh J-G, Lim S, Ko Y-J, Huh S-O, Kim S, Park J-B, Kim J, Jo S, Lee J-Y (2009) SIRT1 regulates tyrosine hydroxylase expression and differentiation of neuroblastoma cells via FOXO3a. FEBS Lett 583:1183–1188

    CAS  PubMed  Google Scholar 

  • Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH, Kim D-H, Suh K-Y (2013a) Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 65(4):536–558

    CAS  PubMed  Google Scholar 

  • Kim ST, Saha K, Kim C, Rotello VM (2013b) The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res 46(3):681–691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konduri K, Nandedkar S, Dãnes N, Suzara V, Artwohl J, Bunte R, Gangadharam PRJ (2003) Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol 111:321–327

    CAS  PubMed  Google Scholar 

  • Koutsopoulos S (2012) Molecular fabrications of smart nanobiomaterials and applications in personalized medicine. Adv Drug Deliv Rev 64:1459–1476

    CAS  PubMed  Google Scholar 

  • Krug N, Madden J, Redington AE, Lackie P, Djukanovic R, Schauer U, Holgate ST, Frew AJ, Howarth PH (1996) T-cell cytokine profile evaluated at the single cell level in BAL and blood in allergic asthma. Am J Respir Cell Mol Biol 14:319–326

    CAS  PubMed  Google Scholar 

  • Kumari S, Mg S, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20:256–275

    CAS  PubMed  Google Scholar 

  • Labiris NR, Dolovich MB (2003) Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 56:588–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lao C, Ruffin M, Normolle D, Heath D, Murray S, Bailey J, Boggs M, Crowell J, Rock C, Brenner D (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:10

    PubMed Central  PubMed  Google Scholar 

  • Lasa-Saracíbar B, Estella-Hermoso de Mendoza A, Mollinedo F, Odero MD, Blanco-Príeto MJ (2013) Edelfosine lipid nanosystems overcome drug resistance in leukemic cell lines. Cancer Lett 334(2):302–310

    PubMed  Google Scholar 

  • Li L, ten Hagen TLM, Hossann M, Süss R, van Rhoon G, Eggermont AMM, Haemmerich D, Koning G (2013) Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J Control Release 168:142–150

    CAS  PubMed  Google Scholar 

  • Lin R-Y, Dayananda K, Chen T-J, Chen C-Y, Liu G-C, Lin K-L, Wang Y-M (2012) Targeted RGD nanoparticles for highly sensitive in vivo integrin receptor imaging. Contrast Media Mol Imaging 7:7–18

    PubMed  Google Scholar 

  • Lu F, Wu S-H, Hung Y, Mou C-Y (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413

    CAS  PubMed  Google Scholar 

  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174

    PubMed  Google Scholar 

  • Mackay PS, Kremers G-J, Kobukai S, Cobb JG, Kuley A, Rosenthal SJ, Koktysh DS, Gore JC, Pham W (2011) Multimodal imaging of dendritic cells using a novel hybrid magneto-optical nanoprobe. Nanomedicine 7:489–496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madan T, Munshi N, de TK, Maitra A, Usha Sarma P, Aggarwal SS (1997) Biodegradable nanoparticles as a sustained release system for the antigens/allergens of Aspergillus fumigatus: preparation and characterisation. Int J Pharm 159:135–147

    CAS  Google Scholar 

  • Mahajan S, Roy I, Xu G, Yong K-T, Ding H, Aalinkeel R, Reynolds J, Sykes D, Nair B, Lin E, Prasad P, Schwartz S (2010) Enhancing the delivery of anti retroviral drug “Saquinavir” across the blood brain barrier using nanoparticles. Curr HIV Res 8:396–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maia J, Santos T, Aday S, Agasse F, Cortes L, Malva JO, Bernardino L, Ferreira L (2010) Controlling the neuronal differentiation of stem cells by the intracellular delivery of retinoic acid-loaded nanoparticles. ACS Nano 5:97–106

    PubMed  Google Scholar 

  • Mann B, Chung K (2006) Blood neutrophil activation markers in severe asthma: lack of inhibition by prednisolone therapy. Respir Res 7:59

    PubMed Central  PubMed  Google Scholar 

  • Mansour H, Rhee Y-S, Wu X (2009) Nanomedicine in pulmonary delivery. Int J Nanomedicine 4:299–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91:1775–1781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuo Y, Ishihara T, Ishizaki J, Miyamoto K-I, Higaki M, Yamashita N (2009) Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell Immunol 260:33–38

    CAS  PubMed  Google Scholar 

  • May JP, Li S-D (2013) Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 10:511–527

    CAS  PubMed  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    CAS  PubMed  Google Scholar 

  • Mccarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–167

    CAS  PubMed  Google Scholar 

  • McMahon RE, Wang L, Skoracki R, Mathur AB (2012) Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 101B:387–397

    Google Scholar 

  • Merkel OM, Kissel T (2011) Nonviral pulmonary delivery of siRNA. Acc Chem Res 45:961–970

    PubMed  Google Scholar 

  • Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    CAS  PubMed  Google Scholar 

  • Minchin R, Martin D (2009) Nanoparticles for molecular imaging—an overview. Endocrinology 151:474–481

    PubMed  Google Scholar 

  • Mollinedo F, Fernández-Luna JL, Gajate C, Martín-Martín B, Benito A, Martínez-Dalmau R, Modolell M (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-XL. Cancer Res 57:1320–1328

    CAS  PubMed  Google Scholar 

  • Monti P, Mercalli A, Leone B, Valerio D, Allavena P, Piemonti L (2003) Rapamycin impairs antigen uptake of human dendritic cells. Transplantation 75:137–145

    CAS  PubMed  Google Scholar 

  • Moon J, Huang B, Irvine D (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24:3724–3746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mossman B, Borm P, Castranova V, Costa D, Donaldson K, Kleeberger S (2007) Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Part Fibre Toxicol 4:4

    PubMed Central  PubMed  Google Scholar 

  • Mulder WJM, Koole R, Brandwijk RJ, Storm G, Chin PTK, Strijkers GJ, de Mello DC, Nicolay K, Griffioen AW (2005) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1–6

    Google Scholar 

  • Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164

    CAS  PubMed  Google Scholar 

  • Mulder WM, Castermans K, Beijnum J, Oude Egbrink MA, Chin PK, Fayad Z, Löwik CW, Kaijzel E, Que I, Storm G, Strijkers G, Griffioen A, Nicolay K (2009) Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 12:17–24

    CAS  PubMed  Google Scholar 

  • Nelson CM, Tien J (2006) Microstructured extracellular matrices in tissue engineering and development. Curr Opin Biotechnol 17:518–523

    CAS  PubMed  Google Scholar 

  • Nevozhay D, Kańska U, Budzyńska R, Boratyński J (2007) [Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases]. Postepy Hig Med Dosw (Online) 61:350–360

    Google Scholar 

  • Niu XY, Peng ZL, Duan WQ, Wang H, Wang P (2006) Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int J Gynecol Cancer 16:743–751

    PubMed  Google Scholar 

  • Noh HK, Lee SW, Kim J-M, Oh J-E, Kim K-H, Chung C-P, Choi S-C, Park WH, Min B-M (2006) Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27:3934–3944

    CAS  PubMed  Google Scholar 

  • O’Brien MER, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449

    PubMed  Google Scholar 

  • Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8

    CAS  PubMed  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan H, Jiang H, Chen W (2006) Interaction of dermal fibroblasts with electrospun composite polymer scaffolds prepared from dextran and poly lactide-co-glycolide. Biomaterials 27:3209–3220

    CAS  PubMed  Google Scholar 

  • Paulo CSO, Pires Das Neves R, Ferreira L (2011) Nanoparticles for intracellular-targeted drug delivery. Nanotechnology 22:494002

    PubMed  Google Scholar 

  • Pekkanen J, Timonen KL, Ruuskanen J, Reponen A, Mirme A (1997) Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 74:24–33

    CAS  PubMed  Google Scholar 

  • Penttinen P, Vallius M, Tiittanen P, Ruuskanen J, Pekkanen J (2006) Source-specific fine particles in urban air and respiratory function among adult asthmatics. Inhal Toxicol 18:191–198

    CAS  PubMed  Google Scholar 

  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915

    CAS  PubMed  Google Scholar 

  • Pietropaoli A, Frampton M, Hyde R, Morrow P, Oberdörster G, Cox C, Speers D, Frasier L, Chalupa D, Huang L-S, Utell M (2004) Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol 16(Suppl 1):59–72

    CAS  PubMed  Google Scholar 

  • Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Wu X, Zhao Y, Li Y, Chen C (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619

    CAS  PubMed  Google Scholar 

  • Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122

    CAS  PubMed  Google Scholar 

  • Rao BP, Srivastava A, Yasmin F, Ray S, Gupta N, Chauhan C, Rao CVC, Wate SR (2012) Particle size distribution of ambient aerosols in an industrial area. Bull Environ Contam Toxicol 88:717–721

    PubMed  Google Scholar 

  • Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    CAS  PubMed  Google Scholar 

  • Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, Welch MJ (2005) 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med 46:1210–1218

    PubMed  Google Scholar 

  • Rytting E, Nguyen J, Wang X, Kissel T (2008) Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 5:629–639

    CAS  PubMed  Google Scholar 

  • Sato N, Kobayashi H, Hiraga A, Saga T, Togashi K, Konishi J, Brechbiel MW (2001) Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn Reson Med 46:1169–1173

    CAS  PubMed  Google Scholar 

  • Schmieder AH, Caruthers SD, Zhang H, Williams TA, Robertson JD, Wickline SA, Lanza GM (2008) Three-dimensional MR mapping of angiogenesis with alpha5beta1(alpha nu beta3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model. FASEB J 22:4179–4189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scholl I, Weissenböck A, Förster-Waldl E, Untersmayr E, Walter F, Willheim M, Boltz Nitulescu G, Scheiner O, Gabor F, Jensen Jarolim E (2004) Allergen-loaded biodegradable poly(D, L-lactic-co-glycolic) acid nanoparticles down-regulate an ongoing Th2 response in the BALB/c mouse model. Clin Exp Allergy 34:315–321

    CAS  PubMed  Google Scholar 

  • Scholl I, Kopp T, Bohle B, Jensen Jarolim E (2006) Biodegradable PLGA particles for improved systemic and mucosal treatment of Type I allergy. Immunol Allergy Clin North Am 26:349–364, ix

    Google Scholar 

  • Schutz C, Juillerat Jeanneret L, Mueller H, Lynch I, Riediker M (2013) Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine 8:449–467

    PubMed  Google Scholar 

  • Selivanov V, Vizán P, Mollinedo F, Fan TWM, Lee PWN, Cascante M (2010) Edelfosine-induced metabolic changes in cancer cells that precede the overproduction of reactive oxygen species and apoptosis. BMC Syst Biol 4:135

    PubMed Central  PubMed  Google Scholar 

  • Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37:223–230

    CAS  PubMed  Google Scholar 

  • Shefrin AE, Goldman RD (2009) Use of dexamethasone and prednisone in acute asthma exacerbations in pediatric patients. Can Fam Physician 55:704–706

    PubMed Central  PubMed  Google Scholar 

  • Slowing II, Trewyn BG, Lin VSY (2007) Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 129:8845–8849

    CAS  PubMed  Google Scholar 

  • Speth PAJ, Hoesel QGCM, Haanen C (1988) Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 15:15–31

    CAS  PubMed  Google Scholar 

  • Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed 50:1242–1258

    CAS  Google Scholar 

  • Strimpakos A, Sharma R (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10:511–545

    CAS  PubMed  Google Scholar 

  • Sung J, Pulliam B, Edwards D (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570

    CAS  PubMed  Google Scholar 

  • Takano H, Ichinose T, Miyabara Y, Shibuya T, Lim HB, Yoshikawa T, Sagai M (1998) Inhalation of diesel exhaust enhances allergen-related eosinophil recruitment and airway hyperresponsiveness in mice. Toxicol Appl Pharmacol 150:328–337

    CAS  PubMed  Google Scholar 

  • Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K, Teratani T, Namatame N, Yamamoto Y, Hanai K, Kato T, Sano A, Ochiya T (2005) Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci U S A 102:12177–12182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas M, Lu J, Chen J, Klibanov A (2007) Non-viral siRNA delivery to the lung. Adv Drug Deliv Rev 59:124–133

    CAS  PubMed  Google Scholar 

  • Thorek DLJ, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29:3583–3590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsutsumi T, Tokumura A, Kitazawa S (1998) Undifferentiated HL-60 cells internalize an antitumor alkyl ether phospholipid more rapidly than resistant K562 cells. Biochim Biophys Acta 1390:73–84

    CAS  PubMed  Google Scholar 

  • Tullius SG, Reutzel-Selke A, Nieminen-Kelhä M, Jonas S, Pratschke J, Bechstein WO, Neuhaus P, Volk HD (2001) Tolerance induction by the graft itself. Transplant Proc 33:2317–2318

    CAS  PubMed  Google Scholar 

  • van Kasteren SI, Campbell SJ, Serres SB, Anthony DC, Sibson NR, Davis BG (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci 106:18–23

    PubMed Central  PubMed  Google Scholar 

  • Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang M (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5:1003–1008

    CAS  PubMed  Google Scholar 

  • Venugopal J, Ramakrishna S (2005) Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 11:847–854

    CAS  PubMed  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    CAS  PubMed  Google Scholar 

  • Vij N (2012) Synthesis and evaluation of airway targeted PLGA nanoparticles for drug delivery in obstructive lung diseases. Methods Mol Biol 906:303–310

    CAS  PubMed  Google Scholar 

  • von Klot S, Wölke G, Tuch T, Heinrich J, Dockery DW, Schwartz J, Kreyling WG, Wichmann HE, Peters A (2002) Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J 20:691–702

    Google Scholar 

  • Vracko R (1974) Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 77:314–346

    CAS  PubMed  Google Scholar 

  • Wang J, Tian S, Petros RA, Napier ME, Desimone JM (2010) The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc 132:11306–11313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watts JK, Corey DR (2010) Clinical status of duplex RNA. Bioorg Med Chem Lett 20:3203–3207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Y, Zhao L (2014) Passive lung-targeted drug delivery systems via intravenous administration. Pharm Dev Technol 19(2):129–136

    CAS  PubMed  Google Scholar 

  • Wilczewska A, Niemirowicz K, Markiewicz K, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037

    CAS  PubMed  Google Scholar 

  • Willis L, Hayes D, Mansour H (2012) Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung 190:251–262

    CAS  PubMed  Google Scholar 

  • Woltman A, van der Kooij SW, Coffer P, Offringa R, Daha M, van Kooten C (2003) Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 101:1439–1445

    CAS  PubMed  Google Scholar 

  • Xiang Q-Y, Wang M-T, Chen F, Gong T, Jian Y-L, Zhang Z-R, Huang Y (2007) Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Arch Pharm Res 30:519–525

    CAS  PubMed  Google Scholar 

  • Yano J, Hirabayashi K, Nakagawa S-I, Yamaguchi T, Nogawa M, Kashimori I, Naito H, Kitagawa H, Ishiyama K, Ohgi T, Irimura T (2004) Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res 10:7721–7726

    CAS  PubMed  Google Scholar 

  • Yarmolenko P, Zhao Y, Landon C, Spasojevic I, Yuan F, Needham D, Viglianti B, Dewhirst M (2010) Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia 26:485–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo D, Guk K, Kim H, Khang G, Wu D, Lee D (2013) Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases. Int J Pharm 450(1–2):87–94

    CAS  PubMed  Google Scholar 

  • Zarogiannis S, Filippidis A, Fernandez S, Jurkuvenaite A, Ambalavanan N, Stanishevsky A, Vohra Y, Matalon S (2013) Nano-TiO2 particles impair adhesion of airway epithelial cells to fibronectin. Respir Physiol Neurobiol 185:454–460

    CAS  PubMed  Google Scholar 

  • Zhang W, Yang H, Kong X, Mohapatra S, Juan-Vergara HS, Hellermann G, Behera S, Singam R, Lockey RF, Mohapatra SS (2005) Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat Med 11:56–62

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the Australian Institute of Nuclear Science and Engineering is acknowledged. TCK was the recipient of AINSE awards. TCK is a Future Fellow and Epigenomic Medicine Laboratory is supported by the Australian Research Council. Supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C. Karagiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tortorella, S., Karagiannis, T.C. (2014). The Significance of Nanoparticles in Medicine and Their Potential Application in Asthma. In: Maulik, N., Karagiannis, T. (eds) Molecular mechanisms and physiology of disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0706-9_10

Download citation

Publish with us

Policies and ethics