Skip to main content

Mitochondria in Retinal Neurodegeneration and Stem Cell Models

  • Chapter
  • First Online:
Regenerative Biology of the Eye

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1020 Accesses

Abstract

Defects in mitochondrial energetics result in several retinal diseases, providing unresolved clues to why some retinal neurons are specifically affected by mitochondrial dysfunction. The central mitochondrial pathway of energy generation—oxidative phosphorylation—presents unique challenges for unravelling the genetic and molecular mechanisms of neuronal susceptibility to energetic failure. This is due to the chimeric assembly of the constituent enzyme complexes from subunits encoded by both the mitochondrial (mt) DNA and nuclear genome. Stem cell modelling of mtDNA and nuclear gene-linked retinal disease hold great promise to advance this understanding, while at the same time providing new therapeutic insights. This unique genetics also has profound implications for stem cell biology. Recent discoveries place regulation of oxidative phosphorylation at the centre of cellular differentiation signalling. These evolving concepts are reviewed here, from oxidative phosphorylation and retinal disease consequences of energetic failure; to mitochondria in stem cells, differentiation, and epigenetic modulation of nuclear gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADOA:

Autosomal dominant optic atrophy

AMD:

Age-related macular degeneration

ATP:

Adenosine triphosphate

CMT:

Charcot–Marie–Tooth

CPEO:

Chronic progressive external ophthalmoplegia

ESCs:

Embryonic stem cells

GWAS:

Genome wide association studies

iPSCs:

Induced pluripotent stem cells

KSS:

Kearns–Sayre syndrome

LHON:

Leber hereditary optic neuropathy

MELAS:

Mitochondrial encephalopathy lactic acidosis and stroke-like episodes

mtDNA:

Mitochondrial DNA

NAD:

Nicotinamide adenine dinucleotide (oxidised)

NADH:

Nicotinamide adenine dinucleotide (reduced)

NARP:

Neurogenic atrophy and retinitis pigmentosa syndrome

OXPHOS:

Oxidative phosphorylation

POAG:

Primary open angle glaucoma

RGCs:

Retinal ganglion cells

RPE:

Retinal pigment epithelium

TIM:

Translocase of the inner membrane

TOM:

Translocase of the outer membrane

References

  1. Margulis L (1971) The origin of plant and animal cells. Am Sci 59:230–235

    CAS  PubMed  Google Scholar 

  2. Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403

    Article  PubMed  Google Scholar 

  3. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH (2013) OXPHOS mutations and neurodegeneration. EMBO J 32:9–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wallace DC (2010) Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51:440–450

    CAS  PubMed  Google Scholar 

  5. Wallace DC (2013) Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases. Philos Trans R Soc Lond B Biol Sci 368(1622):20120267

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wong-Riley M (2010) Energy metabolism of the visual system. Eye Brain 2010(2):99–116

    Article  Google Scholar 

  8. Cheng A, Hou Y, Mattson MP (2010) Mitochondria and neuroplasticity. ASN Neuro 2:e00045

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fraser JA, Biousse V, Newman NJ (2010) The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol 55:299–334

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ II, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430

    Article  CAS  PubMed  Google Scholar 

  11. Carelli V, La Morgia C, Valentino ML, Barboni P, Ross-Cisneros FN, Sadun AA (2009) Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim Biophys Acta 1787:518–528

    Article  CAS  PubMed  Google Scholar 

  12. Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011) Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog Retin Eye Res 30:81–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Brown MD, Trounce IA, Jun AS, Allen JC, Wallace DC (2000) Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation. J Biol Chem 275:39831–39836

    Article  CAS  PubMed  Google Scholar 

  14. Chalmers RM, Davis MB, Sweeney MG, Wood NW, Harding AE (1991) Evidence against an X-linked visual loss susceptibility locus in Leber hereditary optic neuropathy. Am J Hum Genet 59:103–108

    Google Scholar 

  15. Hudson G, Keers S, Man PYW, Griffiths P, Huoponen K, Savontaus ML, Nikoskelainen E, Zeviani M, Carrara F, Horvath R, Karcagi V, Spruijt L, de Coo IF, Smeets HJ, Chinnery PF (2005) Identification of an X-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am J Hum Genet 77:1086–1091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Van Bergen NJ, Crowston JG, Kearns LS, Staffieri SE, Hewitt AW, Cohn AC, Mackey DA, Trounce IA (2011) Mitochondrial oxidative phosphorylation compensation may preserve vision in patients with OPA1-linked autosomal dominant optic atrophy. PLoS One 6(6):e21347

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mäkelä-Bengs PSA, Majander A (1995) Correlation between the clinical symptoms and the proportion of mitochondrial DNA carrying the 8993 point mutation in the NARP syndrome. Pediatr Res 37:634–639

    Article  PubMed  Google Scholar 

  18. Sue CM, Mitchell P, Crimmins DS, Moshegov C, Byrne E, Morris JG (1997) Pigmentary retinopathy associated with the mitochondrial DNA 3243 point mutation. Neurology 49:1013–1017

    Article  CAS  PubMed  Google Scholar 

  19. Isashiki Y, Nakagawa M, Ohba N, Kamimura K, Sakoda Y, Higuchi I, Izumo S, Osame M (1998) Retinal manifestations in mitochondrial diseases associated with mitochondrial DNA mutation. Acta Ophthalmol Scand 76:6–13

    Article  CAS  PubMed  Google Scholar 

  20. Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P (2013) Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem 126(suppl 1):103–117

    Article  CAS  PubMed  Google Scholar 

  21. Jin H, May M, Tranebjaerg L, Kendall E, Fontán G, Jackson J, Subramony SH, Arena F, Lubs H, Smith S, Stevenson R, Schwartz C, Vetrie D (1996) A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet 14:177–180

    Article  CAS  PubMed  Google Scholar 

  22. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749

    Article  CAS  PubMed  Google Scholar 

  23. Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P, De Michele G, Filla A, Cocozza S, Marconi R, Dürr A, Fontaine B, Ballabio A (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983

    Article  CAS  PubMed  Google Scholar 

  24. Züchner S, De Jonghe P, Jordanova A, Claeys KG, Guergueltcheva V, Cherninkova S, Hamilton SR, Van Stavern G, Krajewski KM, Stajich J, Tournev I, Verhoeven K, Langerhorst CT, de Visser M, Baas F, Bird T, Timmerman V, Shy M, Vance JM (2006) Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol 59:276–281

    Article  PubMed  Google Scholar 

  25. Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80:389–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lee S, Van Bergen NJ, Kong GY, Chrysostomou V, Waugh HS, O’Neill EC, Crowston JG, Trounce IA (2011) Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res 93:204–212

    Article  CAS  PubMed  Google Scholar 

  27. Lee S, Sheck L, Crowston JG, Van Bergen N, O’Neill EC, O’Hare F, Kong Y-XG, Chrysostomou V, Vincent AL, Trounce IA (2012) Impaired complex-I-linked respiration and ATP synthesis in primary open-angle glaucoma patient lymphoblasts. Invest Ophthalmol Vis Sci 53:2431–2437

    Article  PubMed  Google Scholar 

  28. Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med 33:295–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liu MM, Chan CC, Tuo J (2012) Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics. Hum Genomics 31:13

    Article  Google Scholar 

  30. Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11:589–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140:2535–2547

    Article  CAS  PubMed  Google Scholar 

  32. Bendich AJ (2010) Mitochondrial DNA, chloroplast DNA and the origins of development in eukaryotic organisms. Biol Direct 5:42

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wallace DC, Ye JH, Neckelmann SN, Singh G, Webster KA, Greenberg BD (1987) Sequence analysis of cDNAs for the human and bovine ATP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations. Curr Genet 12:81–90

    Article  CAS  PubMed  Google Scholar 

  34. Folmes CD, Arrell DK, Zlatkovic-Lindor J, Martinez-Fernandez A, Perez-Terzic C, Nelson TJ, Terzic A (2013) Metabolome and metaboproteome remodelling in nuclear reprogramming. Cell Cycle 12:2355–2365

    Article  CAS  PubMed  Google Scholar 

  35. Facucho-Oliveira JM, St John JC (2009) The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 5:140–158

    Article  CAS  PubMed  Google Scholar 

  36. Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120:4025–4034

    Article  CAS  PubMed  Google Scholar 

  37. Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968

    Article  CAS  PubMed  Google Scholar 

  38. Fujikura J, Nakao K, Sone M, Noguchi M, Mori E, Naito M, Taura D, Harada-Shiba M, Kishimoto I, Watanabe A, Asaka I, Hosoda K, Nakao K (2012) Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia 55:1689–1698

    Article  CAS  PubMed  Google Scholar 

  39. Hämäläinen RH, Manninen T, Koivumäki H, Kislin M, Otonkoski T, Suomalainen A (2013) Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proc Natl Acad Sci U S A 110:E3622–E3630

    Article  PubMed Central  PubMed  Google Scholar 

  40. Bunn CL, Wallace DC, Eisenstadt JM (1974) Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells. Proc Natl Acad Sci U S A 71:1681–1685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. King MP, Koga Y, Davidson M, Schon EA (1992) Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol 12:480–490

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Trounce I, Neill S, Wallace DC (1994) Cytoplasmic transfer of the mtDNA nt 8993 T→G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proc Natl Acad Sci U S A 91:8334–8338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sligh JE, Levy SE, Waymire KG, Allard P, Dillehay DL, Nusinowitz S, Heckenlively JR, MacGregor GR, Wallace DC (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A 97:14461–14466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. McKenzie M, Trounce IA, Cassar CA, Pinkert CA (2004) Production of homoplasmic xenomitochondrial mice. Proc Natl Acad Sci U S A 101:1685–1690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Trounce I, Wallace DC (1996) Production of transmitochondrial mouse cell lines by cybrid rescue of rhodamine-6G pre-treated L-cells. Somat Cell Mol Genet 22:81–85

    Article  CAS  PubMed  Google Scholar 

  46. Trounce IA, McKenzie M, Cassar CA, Ingraham CA, Lerner CA, Dunn DA, Donegan CL, Takeda K, Pogozelski WK, Howell RL, Pinkert CA (2004) Development and initial characterization of xenomitochondrial mice. J Bioenerg Biomembr 36:421–427

    Article  CAS  PubMed  Google Scholar 

  47. Kirby DM, Rennie KJ, Smulders-Srinivasan TK, Acin-Perez R, Whittington M, Enriquez JA, Trevelyan AJ, Turnbull DM, Lightowlers RN (2009) Transmitochondrial embryonic stem cells containing pathogenic mtDNA mutations are compromised in neuronal differentiation. Cell Prolif 42:413–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Abramov AY, Smulders-Srinivasan TK, Kirby DM, Acin-Perez R, Enriquez JA, Lightowlers RN, Duchen MR, Turnbull DM (2010) Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain 133:797–807

    Article  PubMed Central  PubMed  Google Scholar 

  49. Williams AJ, Murrell M, Brammah S, Minchenko J, Christodoulou J (1999) A novel system for assigning the mode of inheritance in mitochondrial disorders using cybrids and rhodamine 6G. Hum Mol Genet 8:1691–1697

    Article  CAS  PubMed  Google Scholar 

  50. Howell N, Kubacka I, Xu M, McCullough DA (1991) Leber hereditary optic neuropathy: involvement of the mitochondrial ND1 gene and evidence for an intragenic suppressor mutation. Am J Hum Genet 48:935–942

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Jun AS, Trounce IA, Brown MD, Shoffner JM, Wallace DC (1996) Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia. Mol Cell Biol 16:771–777

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Mackey DA, Trounce I (2010) Optic nerve genetics–more than meets the eye. Nat Rev Neurol 6:357–358

    Article  PubMed  Google Scholar 

  53. Prigione A, Lichtner B, Kuhl H, Struys EA, Wamelink M, Lehrach H, Ralser M, Timmermann B, Adjaye J (2011) Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Stem Cells 29:1338–1348

    CAS  PubMed  Google Scholar 

  54. Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, Chalkia D, MacGregor G, Sassone-Corsi P, Wallace DC (2012) Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151:333–343

    Article  CAS  PubMed  Google Scholar 

  55. Kelly RD, Rodda AE, Dickinson A, Mahmud A, Nefzger CM, Lee W, Forsythe JS, Polo JM, Trounce IA, McKenzie M, Nisbet DR, St John JC (2013) Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cells 31:703–716

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Trounce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trounce, I.A. (2014). Mitochondria in Retinal Neurodegeneration and Stem Cell Models. In: PĂ©bay, A. (eds) Regenerative Biology of the Eye. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0787-8_2

Download citation

Publish with us

Policies and ethics