Skip to main content

Part of the book series: Space Technology Library ((SPTL,volume 33))

Abstract

This chapter will discuss several kinds of sensors and actuators used to determine and control spacecraft attitude [26, 44, 54, 66]. The history of attitude sensor development has emphasized increased resolution and accuracy as well as decreased size, weight, and power (often abbreviated as SWaP). Actuator technologies have also been scaled down to be appropriate for microsatellites and cubesats. We begin with a brief introduction to redundancy considerations, and then consider some specific sensors and actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This can be derived, for example, from Eqs. (A-12) and (A-22) in [66].

  2. 2.

    An example calculation is set as an exercise in Chap. 5.

  3. 3.

    Proper motion is accounted for separately.

  4. 4.

    This is v∕c ≈ 100  μrad, so (v∕c)2 ≈ 0.002 arcsec, which indicates that a fully relativistic analysis is not required.

  5. 5.

    The U.S. Coast Guard Navigation Center maintains a website that contains GPS almanacs, and as of this writing this website is given by http://www.navcen.uscg.gov/.

  6. 6.

    Equation (4.27) assumes that the light travels through a vacuum. The fiber’s index of refraction complicates the analysis, but does not change the order-of-magnitude estimates.

  7. 7.

    Note that ν is measured in Hz, and ω in rad/s.

  8. 8.

    Note that we cannot make the same assumption for the stochastic variables.

  9. 9.

    The authors thank John P. Downing for suggesting this configuration.

  10. 10.

    The momentum polyhedron of the dodecahedron reaction wheel configuration takes the form of a rhombic tricontahedron, the shape of a 30-sided die.

  11. 11.

    This relation, which is crucial for real-time implementation of the minimax algorithm, was discovered by Frank X. Liu.

  12. 12.

    This is true for all the configurations considered here, but may not hold for some pathological configurations [41].

  13. 13.

    The four-wheel and six-wheel pyramids with these parameters, and also the dodecahedron, have \( \mathscr {W}_n \mathscr {W}_n^T=(n/3)I_3\). Then Eq. (4.75) shows that the pseudoinverse distribution method gives \(\|{\mathbf {H}}^w_W\|{ }^2=(3/n)\|{\mathbf {H}}^w_B\|{ }^2\) for these configurations.

  14. 14.

    Variable-speed CMGs, combining the properties of CMGs and reaction wheels, have been proposed but are not widely employed.

References

  1. Al-Bender, F., Swevers, J.: Characterization of friction force dynamics. IEEE Contr. Syst. Mag. 28(6), 64–81 (2008)

    MATH  Google Scholar 

  2. Åström, K.J., Canudas de Wit, C.: Revisiting the LuGre model. IEEE Contr. Syst. Mag. 28(6), 101–114 (2008)

    Google Scholar 

  3. Axelrad, P., Behre, C.P.: Satellite attitude determination based on GPS signal-to-noise ratio. Proc. IEEE 87(1), 133–144 (1999)

    Google Scholar 

  4. Bahcall, J.N.: Star counts and galactic structure. Annu. Rev. Astron. Astrophys. 24, 577–611 (1986)

    Google Scholar 

  5. Bhanderi, D.D.V.: Modeling Earth albedo currents on Sun sensors for improved vector observation. In: AIAA Guidance, Navigation and Control Conference. Keystone (2006). AIAA 2006-6592

    Google Scholar 

  6. Bhanderi, D.D.V., Bak, T.: Modeling Earth albedo for satellites in Earth orbit. In: AIAA Guidance, Navigation and Control Conference. San Francisco (2005). AIAA 2005-6465

    Google Scholar 

  7. Bhuta, P.G., Koval, L.R.: A viscous ring damper for a freely precessing satellite. Int. J. Mech. Sci. 8(5), 383–395 (1966)

    Google Scholar 

  8. Bialke, B.: High fidelity mathematical modeling of reaction wheel performance. In: Culp, R.D., Igli, D. (eds.) Guidance and Control 1998, Advances in the Astronautical Sciences, vol. 98, pp. 483–496. Univelt, San Diego (2007)

    Google Scholar 

  9. Bialke, B.: Microvibration disturbance fundamentals for rotating mechanisms. In: Miller, K.B. (ed.) Guidance and Control 2011, Advances in the Astronautical Sciences, vol. 141, pp. 417–432. Univelt, San Diego (2007)

    Google Scholar 

  10. Braasch, M.S.: Multipath effects. In: Parkinson, B., Spilker, J. (eds.) Global Positioning System: Theory and Applications, Progress in Astronautics and Aeronautics, vol. 64, chap. 14. American Institute of Aeronautics and Astronautics, Washington, DC (1996)

    Google Scholar 

  11. Bronowicki, A.J.: Forensic investigation of reaction wheel nutation on isolator. In: AIAA/ASME/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Schaumberg (2008)

    Google Scholar 

  12. Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Automat. Contr. 40(3), 419–425 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Chen, X., Steyn, W.H.: Robust combined eigenaxis slew maneuver. In: AIAA Guidance, Navigation and Control Conference, pp. 521–529. Portland (1999). AIAA 1999-4048

    Google Scholar 

  14. Chow, W.W., Sanders, V.E., Schleich, W., Scully, M.O.: The ring laser gyro. Rev. Mod. Phys. 57(1), 61–103 (1985)

    Google Scholar 

  15. Cohen, C.E.: Attitude determination using GPS. Ph.D. thesis, Stanford University (1993)

    Google Scholar 

  16. Cohen, C.E.: Attitude determination. In: B. Parkinson, J. Spilker (eds.) Global Positioning System: Theory and Applications, Progress in Astronautics and Aeronautics, vol. 64, chap. 19. American Institute of Aeronautics and Astronautics, Washington, DC (1996)

    Google Scholar 

  17. Cowen, R.: The wheels come off Kepler. Nature 497(7450), 417–418 (2013)

    Google Scholar 

  18. Dahl, P.R.: A solid friction model. Contractor Report TOR-0158(3107-18)-1, The Aerospace Corporation, Los Angeles (1968)

    Google Scholar 

  19. Fallon III, L.: Gyroscopes. In: J.R. Wertz (ed.) Spacecraft Attitude Determination and Control, chap. 6.5. Kluwer Academic, Dordrecht (1978)

    Google Scholar 

  20. Farrenkopf, R.L.: Analytic steady-state accuracy solutions for two common spacecraft attitude estimators. J. Guid. Contr. 1(4), 282–284 (1978)

    Google Scholar 

  21. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  22. Hablani, H.B.: Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization. In: Proceedings of the Flight Mechanics/Estimation Theory Symposium, pp. 3–22. NASA-Goddard Space Flight Center, Greenbelt (1992)

    Google Scholar 

  23. Hablani, H.B.: Sun-tracking commands and reaction wheel sizing with configuration optimization. J. Guid. Contr. Dynam. 17(4), 805–814 (1994)

    Google Scholar 

  24. Haworth, D.: How many stars can you observe (2013). http://www.stargazing.net/David/constel/howmanystars.html

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  26. Horri, N.M., Palmer, P., Giffen, A.: Active attitude control mechanisms. In: Blockley, R., Shyy, W. (eds.) Encyclopedia of Aerospace Engineering. Wiley, Chichester (2010)

    Google Scholar 

  27. Hubert, C.: Modeling completely filled viscous ring nutation dampers. Technical Report B2027, NASA Goddard Space Flight Center (2002)

    Google Scholar 

  28. Kawaguchi, J., Maeda, K., Matsuo, H., Ninomiya, K.: Closed loop momentum transfer maneuvers using multiwheels. J. Guid. Contr. Dynam. 18(4), 867–874 (1995)

    Google Scholar 

  29. Kumar, K.: A microstructure study of corrosion in Ag-Cu flex leads, Journal of the Electrochemical Society, 127(4), 906–910 (1980)

    Google Scholar 

  30. Kurokawa, H.: Survey of theory and steering laws of single-gimbal control moment gyros. J. Guid. Contr. Dynam. 30(5), 1331–1340 (2007)

    Google Scholar 

  31. Lee, F.C., Werner, M.: Reaction wheel jitter analysis including rocking dynamics & bearing harmonic disturbances. In: Hollowell, H.E., Culp, R.D. (eds.) Guidance and Control 2007, Advances in the Astronautical Sciences, vol. 128, pp. 93–110. Univelt, San Diego (2007)

    Google Scholar 

  32. Leick, A.: GPS Satellite Surveying, 3rd edn. Wiley, Chichester (2004)

    Google Scholar 

  33. Leyva, I.A.: Spacecraft subsystems I – propulsion. In: Wertz, J.R., Everett, D.F., Puschell, J.J. (eds.) Space Mission Engineering: The New SMAD, Space Technology Library. Microcosm Press, Hawthorne (2011)

    Google Scholar 

  34. Liebe, C.C.: Accuracy performance of star trackers – a tutorial. IEEE Trans. Aero. Electron. Syst. 38(2), 587–599 (2002)

    Google Scholar 

  35. Lightsey, E.G.: Development and flight demonstration of a GPS receiver for space. Ph.D. thesis, Stanford University (1997)

    Google Scholar 

  36. Lightsey, E.G., Madsen, J.: Three-axis attitude determination using Global Positioning System signal strength measurements. J. Guid. Contr. Dynam. 26(2), 304–310 (2003)

    Google Scholar 

  37. Liu, K.C., Kenney, T., Maghami, P., Mulé, P., Blaurock, C., Haile, W.B.: Jitter test program and on-orbit mitigation strategies for Solar Dynamics Observatory. In: 20th International Symposium on Space Flight Dynamics. NASA Goddard Space Flight Center, Annapolis (2007)

    Google Scholar 

  38. Liu, K.C., Maghami, P., Blaurock, C.: Reaction wheel disturbance modeling, jitter analysis, and validation tests for Solar Dynamics Observatory. In: AIAA Guidance, Navigation and Control Conference. Honolulu (2008). AIAA 2008-7232

    Google Scholar 

  39. Madsen, J., Lightsey, E.G.: Robust spacecraft attitude determination using Global Positioning System receivers. J. Spacecraft Rockets 41(4), 635–643 (2004)

    Google Scholar 

  40. Margulies, G., Aubrun, J.N.: Geometric theory of single-gimbal control moment gyro systems. J. Astronaut. Sci. 26(2), 221–238 (1978)

    Google Scholar 

  41. Markley, F.L., Reynolds, R.G., Liu, F.X., Lebsock, K.L.: Maximum torque and momentum envelopes for reaction-wheel arrays. J. Guid. Contr. Dynam. 33(5), 1606–1614 (2010)

    Google Scholar 

  42. Masterson, R.A., Miller, D.W., Grogan, R.L.: Development and validation of reaction wheel disturbance models: Empirical model. J. Sound Vib. 249(3), 575–598 (2002)

    Google Scholar 

  43. McQuerry, J.P., Radovich Jr., M.A., Deters, R.A.: A precision star tracker for the nineties: A system guide to applications. In: Culp, R.D., Gravseth, A.D. (eds.) Guidance and Control 1990, Advances in the Astronautical Sciences, vol. 72, pp. 83–104. Univelt, San Diego (1990). AAS 90–014

    Google Scholar 

  44. Merhav, S.: Aerospace Sensor Systems and Applications. Springer, New York (1962)

    Google Scholar 

  45. Merlo, S., Norgia, M., Donati, S.: Fiber gyroscope principles. In: Lòpez-Higuera, J.M. (ed.) Handbook of Optical Fibre Sensing Technology, chap. 16, pp. 331–347. Wiley, Chichester (2002)

    Google Scholar 

  46. Nicolle, M., Fusco, T., Rousset, G., Michau, V.: Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics. Optic Lett. 29(3), 2743–2745 (2004)

    Google Scholar 

  47. O’Donnell Jr., J.R., Concha, M., Tsai, D.C., Placanica, S.J., Morrissey, J.R., Russo, A.M.: Space Technology 5 launch and operations. In: Hallowell, H.E., Culp, R.D. (eds.) Guidance and Control 2007, Advances in the Astronautical Sciences, vol. 128, pp. 735–753. Univelt, San Diego (1999). AAS 07–091

    Google Scholar 

  48. Pandiyan, R., Solaiappan, A., Malik, N.: A one step batch filter for estimating gyroscope calibration parameters using star vectors. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Providence (2004). AIAA 04–4858

    Google Scholar 

  49. Park, K., Crassidis, J.L.: Attitude determination methods using pseudolite signal phase measurements. J. Inst. Navigation 53(2), 121–134 (2006)

    Google Scholar 

  50. Park, K., Crassidis, J.L.: A robust GPS receiver self survey algorithm. J. Inst. Navigation 53(4), 259–268 (2006)

    Google Scholar 

  51. Parkinson, B., Spilker, J. (eds.): Global Positioning System: Theory and Applications, Progress in Astronautics and Aeronautics, vol. 64. American Institute of Aeronautics and Astronautics, Washington, DC (1996)

    Google Scholar 

  52. Parkinson, B.W.: GPS error analysis. In: Parkinson, B., Spilker, J. (eds.) Global Positioning System: Theory and Applications, Progress in Astronautics and Aeronautics, vol. 64, chap. 11. American Institute of Aeronautics and Astronautics, Washington, DC (1996)

    Google Scholar 

  53. Pittelkau, M.E.: Kalman filtering for spacecraft system alignment calibration. J. Guid. Contr. Dynam. 24(6) (2001)

    Google Scholar 

  54. Pittelkau, M.E.: Sensors for attitude determination. In: Blockley, R., Shyy, W. (eds.) Encyclopedia of Aerospace Engineering. Wiley, Chichester (2010)

    Google Scholar 

  55. Post, E.J.: Sagnac effect. Rev. Mod. Phys. 39(2), 475–493 (1967)

    Google Scholar 

  56. Salomon, P.M., Glavich, T.A.: Image signal processing in sub-pixel accuracy star trackers. In: Barbe, D.F. (ed.) Smart Sensors II, SPIE Proceedings, vol. 252, pp. 64–74 (1980)

    Google Scholar 

  57. Secroun, A., Lampton, M., Levi, M.: A high-accuracy, small field of view star guider with application to SMAP. Exp. Astron. 12(2), 69–85 (2000)

    Google Scholar 

  58. Serrano, J., Potti, J., Bernedo, P., Silvestrin, P.: A new spacecraft attitude determination scheme based on the use of GPS line-of-sight vectors. In: Proceedings of the ION GPS-95, pp. 1797–1806. Institute of Navigation, Fairfax (1995)

    Google Scholar 

  59. Shuster, M.D.: Stellar aberration and parallax: A tutorial. J. Astronaut. Sci. 51(4), 477–494 (2003)

    Google Scholar 

  60. Sinnott, R., Perryman, M.: Millennium Star Atlas, vol. 1. Sky Publishing Corporation & European Space Agency, Cambridge (1997)

    Google Scholar 

  61. Spinney, V.W.: Applications of the Global Positioning System as an attitude reference for near Earth users. In: ION National Aerospace Meeting, Naval Air Development Center. Warminster (1976)

    Google Scholar 

  62. Spratling IV, B.B., Mortari, D.: A survey on star identification algorithms. Algorithms 2(1), 93–107 (2009)

    MATH  Google Scholar 

  63. Steyn, W.H.: Near-minimum-time eigenaxis rotation maneuvers using reaction wheels. J. Guid. Contr. Dynam. 18(5), 1184–1189 (1995)

    Google Scholar 

  64. van Bezooijen, R.W.H., Anderson, K.A., Ward, D.K.: Performance of the AST-201 star tracker for the Microwave Anisotropy Probe. In: AIAA Guidance, Navigation and Control Conference. Monterey (2002). AIAA 2002-4582

    Google Scholar 

  65. Wertheimer, J.G., Laughlin, G.: Are Proxima Centauri and α Centauri gravitationally bound? Astron. J. 132(5), 1995–1997 (2007)

    Google Scholar 

  66. Wertz, J.R. (ed.): Spacecraft Attitude Determination and Control. Kluwer Academic, Dordrecht (1978)

    Google Scholar 

  67. Wie, B.: Singularity analysis and visualization for single-gimbal control moment gyro systems. J. Guid. Contr. Dynam. 27(2), 271–282 (2004)

    MathSciNet  Google Scholar 

  68. Witze, A.: Green fuels blast off. Nature 500(7464), 509–510 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Markley, F.L., Crassidis, J.L. (2014). Sensors and Actuators. In: Fundamentals of Spacecraft Attitude Determination and Control. Space Technology Library, vol 33. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0802-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0802-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0801-1

  • Online ISBN: 978-1-4939-0802-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics