Skip to main content

Bacterial Neuroactive Compounds Produced by Psychobiotics

  • Chapter
  • First Online:
Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease

Abstract

We recently coined the phrase ‘psychobiotics’ to describe an emerging class of probiotics of relevance to psychiatry [Dinan et al., Biol Psychiatry 2013;74(10):720–726]. Such “mind-altering” probiotics may act via their ability to produce various biologically active compounds, such as peptides and mediators normally associated with mammalian neurotransmission. Several molecules with neuroactive functions such as gamma-aminobutyric acid (GABA), serotonin, catecholamines and acetylcholine have been reported to be microbially-derived, many of which have been isolated from bacteria within the human gut. Secreted neurotransmitters from bacteria in the intestinal lumen may induce epithelial cells to release molecules that in turn modulate neural signalling within the enteric nervous system and consequently signal brain function and behaviour of the host. Consequently, neurochemical containing/producing probiotic bacteria may be viewed as delivery vehicles for neuroactive compounds and as such, probiotic bacteria may possibly have the potential as a therapeutic strategy in the prevention and/or treatment of certain neurological and neurophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine

AA:

Arachidonic acid

ASD:

Autism spectrum disorders

CLA:

Conjugated linoleic acid

CNS:

Central nervous system

DHA:

Docosahexaenoic acid

GABA:

Gamma-aminobutyric acid

GAD:

Glutamate decarboxylase

GF:

Germ-free

GIT:

Gastrointestinal tract

IPA:

Indole-3-propionic acid

LAB:

Lactic acid bacteria

LC-PUFA:

Long-chain fatty acid

PPAR γ:

Peroxisome proliferator-activated receptor gamma

SCFA:

Short chain fatty acid

TNF:

Tumor necrosis factor

References

  1. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74(10):720–726

    CAS  PubMed  Google Scholar 

  2. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742

    CAS  PubMed  Google Scholar 

  3. Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052

    CAS  PubMed Central  Google Scholar 

  4. Neufeld K, Kang N, Bienenstock J, Foster J (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–264

    CAS  PubMed  Google Scholar 

  5. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6:306–314

    CAS  PubMed  Google Scholar 

  6. O’Mahony SM, Hyland NP, Dinan TG, Cryan JF (2011) Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 214:71–88

    Google Scholar 

  7. Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behaviour. Neurogastroenterol Motil 23:187–192

    CAS  PubMed  Google Scholar 

  8. FAO/WHO (2001) Report on Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. ftp://ftp.fao.org/es/esn/food/probio_report_en.pdf

  9. Lyte M (2011) Probiotics function mechanistically as delivery vehicles of neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33(8):574–581

    CAS  PubMed  Google Scholar 

  10. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Amino butyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417

    CAS  PubMed  Google Scholar 

  11. Thomas CA, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J (2012) Histamine derived from probiotic Lactobacillus reuteri suppress TNF via modulation of PKA and ERK signalling. PLoS One 7(2):e31951

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Kawashima K, Misawa H, Moriwaki Y, Fujii YX, Fujii T, Horiuchi Y, Yamada T, Imanaka T, Kamekura M (2007) Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 80:2206–2209

    CAS  PubMed  Google Scholar 

  13. Marquardt P, Spitznagel G (1959) Bakterielle Acetylcholine Bildung in Kunstlichen Nahrboden. Arzneimittelforschung 9:456–465

    CAS  PubMed  Google Scholar 

  14. Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms using of high performance liquid chromatography. Dokl Biochem 372:115–117 (in Russian issue 840–842)

    Google Scholar 

  15. Forsythe P, Kunze WA (2013) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 70:55–69

    CAS  PubMed  Google Scholar 

  16. Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, Aiba Y, Koga Y, Sudo N (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25:521–e371

    CAS  PubMed  Google Scholar 

  17. Özogul F (2011) Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogens. Int J Food Sci Technol 46(3):478–484

    Google Scholar 

  18. Roshchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In: Lyte M, Freestone PPE (eds) Microbial endocrinology: interkingdom signaling in infectious disease and health. Springer, New York, pp 17–52

    Google Scholar 

  19. Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95(1):50–60

    CAS  PubMed  Google Scholar 

  20. Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145

    CAS  PubMed  Google Scholar 

  21. Barrett E, Ross RP, Fitzgerald GF, Stanton C (2007) Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol 73:2333–2337

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Rosberg-Cody E, Ross RP, Hussey S, Ryan CA, Murphy BP, Fitzgerald GF, Devery R, Stanton C (2004) Mining the microbiota of the neonatal gastrointestinal tract for CLA-producing bifidobacteria. Appl Environ Microbiol 70:4635–4641

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Boontham P, Robins A, Chandran P, Pritchard D, Camara M, Williams P, Chuthapisith S, McKechnie A, Rowlands BJ, Eremin O (2008) Significant immunomodulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: possible link in human sepsis. Clin Sci (Lond) 115:343–351

    CAS  Google Scholar 

  25. Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GS, Bycroft BW, Pritchard DI (1998) The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect Immun 66:36–42

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 103:10420–10425

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Schousboe A, Waagepetersen HS (2007) GABA: homeostatic and pharmacological aspects. In: Tepper JM, Abercrombie ED, Bolam JP (eds) Gaba and the basal ganglia: from molecules to systems. Elsevier Science, Amsterdam, pp 9–19

    Google Scholar 

  28. Bienenstock J, Forsythe P, Karimi K, Kunze W (2010) Neuroimmune aspects of food intake. Int Dairy J 20:253–258

    CAS  Google Scholar 

  29. Komatsuzaki N, Nakamura T, Kimura T, Shima J (2008) Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci Biotechnol Biochem 72:278–285

    CAS  PubMed  Google Scholar 

  30. Higuchi T, Hayashi H, Abe K (1997) Exchange of glutamate and gammaaminobutyrate in a Lactobacillus strain. J Bacteriol 179:3362–3364

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of gammaaminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Hiraga K, Ueno YH, Oda KH (2008) Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Biosci Biotechnol Biochem 72:1299–1306

    CAS  PubMed  Google Scholar 

  33. Park KB, Oh SH (2006) Isolation and characterization of Lactobacillus buchneri strains with high gamma-aminobutyric acid producing capacity from naturally aged cheese. Food Sci Biotechnol 15:86–90

    CAS  Google Scholar 

  34. Rizzello CG, Cassone A, Di Cagno R, Gobbetti M (2008) Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. J Agric Food Chem 56:6936–6943

    CAS  PubMed  Google Scholar 

  35. Komatsuzaki N, Shima J, Kawamoto S, Momose H (2005) Production of gamma-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504

    CAS  Google Scholar 

  36. Li HX, Gao DD, Cao YS, Xu HY (2008) A high gamma-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai. Ann Microbiol 58:649–653

    CAS  Google Scholar 

  37. Ko CY, Victor Lin HT, Tsai GJ (2013) Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem 48(4):559–568

    CAS  Google Scholar 

  38. Krantis A (2000) GABA in the mammalian enteric nervous system. News Physiol Sci 15:284–290

    CAS  PubMed  Google Scholar 

  39. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienestock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Jakobs C, Jaeken J, Gibson KM (1993) Inherited disorders of GABA metabolism. J Inherit Metab Dis 16:704–715

    CAS  PubMed  Google Scholar 

  41. Wong CG, Bottiglieri T, Snead OC (2003) GABA, gammahydroxybutyric acid, and neurological disease. Ann Neurol 54:S3–S12

    CAS  PubMed  Google Scholar 

  42. Bjurstom H, Wang J, Ericsson I, Bengtsson M, Liu Y, Kumar-Mendu S, Issazadeh-Navikas S, Birnir B (2008) GABA, a natural immunomodulator of T lymphocytes. J Neuroimmunol 205:44–50

    PubMed  Google Scholar 

  43. Page AJ, O’Donnell TA, Blackshaw LA (2006) Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels. Neuroscience 137:627–636

    CAS  PubMed  Google Scholar 

  44. Kema IP, de Vries EG, Muskiet FA (2000) Clinical chemistry of serotonin and metabolites. J Chromatogr B Biomed Sci Appl 747(1–2):33–48

    CAS  PubMed  Google Scholar 

  45. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106:3698–3703

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673

    CAS  PubMed  Google Scholar 

  47. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43:164–174

    PubMed  Google Scholar 

  48. Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J (2010) Mood and gut feelings. Brain Behav Immun 24:9–16

    PubMed  Google Scholar 

  49. Shishov VA, Kirovskaia TA, Kudrin VS, Oleskin AV (2009) Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Prikl Biokhim Mikrobiol 45(5):550–554

    CAS  PubMed  Google Scholar 

  50. Kobayashi K (2001) Role of catecholamine signalling in brain and nervous system functions: new insights from mouse molecular genetic study. J Investig Dermatol Symp Proc 6:115–121

    CAS  PubMed  Google Scholar 

  51. Calabresi P, Castrioto A, Di Filippo M, Picconi B (2013) New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 12:811–821

    CAS  PubMed  Google Scholar 

  52. Robertson IH (2013) A noradrenergic theory of cognitive reserve: implications for Alzheimers disease. Neurobiol Aging 34(1):298–308

    CAS  PubMed  Google Scholar 

  53. Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 45:54–63

    CAS  PubMed  Google Scholar 

  54. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303(11):G1288–G1295

    CAS  PubMed  Google Scholar 

  55. Kruk ZL, Pycock CJ (1990) Neurotransmitters and drugs. Chapman and Hall, New York

    Google Scholar 

  56. Tucˇek S (1988) Choline acetyltransferase and the synthesis of acetylcholine. In: Whittaker VP (ed) Handbook of experimental pharmacology. The cholinergic synapse, vol 86. Springer, Berlin, pp 125–165

    Google Scholar 

  57. Tucˇek S (1882) The synthesis of acetylcholine in skeletal muscles of the rat. J Physiol 322:53–69

    Google Scholar 

  58. Wessler I, Kirkpatrick CJ, Racke K (1999) Cholinergic “pitfall”: acetylcholine, a universal cell molecule widely distributed in biological systems: expression and function in humans. Clin Exp Pharmacol Physiol 26:198–205

    CAS  PubMed  Google Scholar 

  59. Girvin GT, Stevenson JW (1954) Cell free “choline acetylase” from Lactobacillus plantarum. Can J Biochem Physiol 32:131–146

    CAS  PubMed  Google Scholar 

  60. Rowatt E (1948) The relation of pantothenic acid to acetylcholine formation by a strain of Lactobacillus plantarum. J Gen Microbiol 2:25–30

    CAS  Google Scholar 

  61. Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K (2003) Evolutional study on acetylcholine expression. Life Sci 72:1745–1756

    CAS  PubMed  Google Scholar 

  62. Panula P, Nuutinen S (2013) The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 14:472–487

    CAS  PubMed  Google Scholar 

  63. Alvarez EO (2009) The role of histamine on cognition. Behav Brain Res 199:183–189

    CAS  PubMed  Google Scholar 

  64. Airaksinen MS, Paetau A, Paljarvi L, Reinikainen K, Riekkinen P, Suomalainen R, Panula P (1991) Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience 44:465–481

    CAS  PubMed  Google Scholar 

  65. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    PubMed  Google Scholar 

  66. Landete JM, de las Rivas B, Marcobal A, Munoz R (2008) Updated molecular knowledge about histamine biosynthesis by bacteria. Crit Rev Food Sci Nutr 48:697–714

    Google Scholar 

  67. Coton E, Rollan G, Bertrand A, Lonvaud-Funel A (1998) Histamine producing lactic acid bacteria: early detection, frequency and distribution. Am J Enol Vitic 49:199–204

    CAS  Google Scholar 

  68. Shalaby AR (1996) Significance of biogenic amines in food safety and human health. Food Res Int 29:675–690

    CAS  Google Scholar 

  69. Morita I, Kawamoto M, Yoshida H (1992) Difference in the concentration of tryptophan metabolites between maternal and umbilical foetal blood. J Chromatogr 576:334–339

    CAS  PubMed  Google Scholar 

  70. Young S, Anderson GM, Gauthier S, Purdy WC (1980) The origin of indoleacetic and indolepropionic acid in rat and human cerebrospinal fluid. J Neurochem 34:1087–1092

    CAS  PubMed  Google Scholar 

  71. Karbownik M, Reiter RJ, Garcia JJ, Cabrera J, Burkhardt S, Osuna C, Lewinski A (2001) Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: relevance to cancer reduction. J Cell Biochem 81:507–513

    CAS  PubMed  Google Scholar 

  72. Bendheim PE, Poeggeler B, Neria E, Ziv V, Pappolla MA, Chain DG (2002) Development of indole-3-propionic acid (OXIGON) for Alzheimer’s disease. J Mol Neurosci 19:213–217

    CAS  PubMed  Google Scholar 

  73. Hwang IK, Yoo KY, Li H, Park OK, Lee CH, Choi JH, Jeong YG, Lee YL, Kim YM, Kwon YG, Won MH (2009) Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J Neurosci Res 87:2126–2137

    CAS  PubMed  Google Scholar 

  74. Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (1999) Potent neuroprotective properties against the Alzheimer β-amyloid by an exogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem 274(31):21937–21942

    CAS  PubMed  Google Scholar 

  75. Jellet JJ, Forrest TP, Macdonald IA, Marrie TJ, Holdeman LV (1980) Production of indole-3-propionic acid and 3-(p-hydroxyphenyl) propionic acid by Clostridium sporogenes: a convenient thin-layer chromatography detection system. Can J Microbiol 26(4):448–453

    CAS  PubMed  Google Scholar 

  76. Smith EA, Macfarlane GT (1997) Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb Ecol 33:180–188

    CAS  PubMed  Google Scholar 

  77. Kovatcheva-Datchary P, Zoetendal EG, Venema K, de Vos WM, Smidt H (2009) Review: tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2:s9–s22

    Google Scholar 

  78. Cummings JH (1981) Short chain fatty-acids in the human-colon. Gut 22:763–779

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Cummings JH (1995) In: Gibson GR, Macfarlane GT (eds) Human colonic bacteria: role in nutrition, physiology and health. CRC, Boca Raton, pp 101–130

    Google Scholar 

  80. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064

    CAS  PubMed  Google Scholar 

  81. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    CAS  PubMed  Google Scholar 

  82. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 101:1045–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, Tian H, Li Y (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149(9):4519–4526

    CAS  PubMed  Google Scholar 

  85. Hong Y, Nishimura HY, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng DD, Chen C, Lee HG, Katoh K, Roh SG, Sasaki S (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146(12):5092–5099

    CAS  PubMed  Google Scholar 

  86. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagizawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105(43):16767–16772

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Karuri AR, Dobrowsky E, Tannock IF (1993) Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment. Br J Cancer 68:1080–1087

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Maurer MH, Canis M, Kuschinsky W, Duelli R (2004) Correlation between local monocarboxylate transporter 1 (MCT1) and glucose transporter 1 (GLUT1) densities in the adult rat brain. Neurosci Lett 355:105–108

    CAS  PubMed  Google Scholar 

  89. Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122:677–688

    CAS  PubMed  Google Scholar 

  90. Peinado A, Yuste R, Katz LC (1993) Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10:103–114

    CAS  PubMed  Google Scholar 

  91. Nakao S, Moriya Y, Furuyama S, Niederman R, Sugiya H (1998) Propionic acid stimulates superoxide generation in human neutrophils. Cell Biol Int 22:331–337

    CAS  PubMed  Google Scholar 

  92. DeCastro M, Nankova BB, Shah P, Patel P, Mally PV, Mishra R, La Gamma EF (2005) Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res Mol Brain Res 142:28–38

    CAS  PubMed  Google Scholar 

  93. Shah P, Nankova BB, Parab S, La Gamma EF (2006) Short chain fatty acids induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res 1107:13–23

    CAS  PubMed  Google Scholar 

  94. El-Ansary AK, Ben BA, Kotb M (2012) Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation 9:74

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Mitsui R, Ono S, Karaki S, Kuwahara A (2005) Neural and nonneural mediation of propionate-induced contractile responses in the rat distal colon. Neurogastroenterol Motil 17:585–594

    CAS  PubMed  Google Scholar 

  96. Schultz SR, MacFabe DF, Martin S, Jackson J, Taylor R, Boon F, Ossenkopp KP, Caiin DP (2009) Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: further development of a rodent model of autism. Behav Brain Res 200:33–41

    Google Scholar 

  97. Schultz SR, MacFabe DF, Ossenkopp KP, Scratch S, Whelan J, Taylor R, Cain DP (2008) Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology 54:901–911

    Google Scholar 

  98. MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffmann JE, Boon F, Taylor AR, Kavaliers M, Ossenkopp KP (2007) Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 176:149–169

    CAS  PubMed  Google Scholar 

  99. Thomas RH, Meeking MM, Mepham JR, Tichenoff L, Possmayer F, Liu S, MacFabe DF (2012) The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorder. J Neuroinflammation 9:153

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Finegold SM, Dowd SE, Gontcharova V, Liu CX, Henley KE, Wolcott RD (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16:444–453

    CAS  PubMed  Google Scholar 

  101. Song Y, Liu C, Finegold SM (2004) Real-time PCR quantification of clostridia in feces of autistic children. Appl Environ Microbiol 70:6459–6465

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Hosseini E, Grootaert C, Verstraete W, Van de Wiele T (2011) Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 69(5):245–258

    PubMed  Google Scholar 

  103. Kruh J, Defer N, Tichonicky L (1995) In: Cummings JH, Rombeau JL, Sakata T (eds) Physiological and clinical aspects of short chain fatty acids. Cambridge University Press, Cambridge, pp 275–288

    Google Scholar 

  104. Schroeder FA, Lin CL, Crusio WE, Akbarian S (2007) Antidepressant- like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62:55–64

    CAS  PubMed  Google Scholar 

  105. Haag M (2003) Essential fatty acids and the brain. Can J Psychiatry 48(3):195–203

    PubMed  Google Scholar 

  106. Lauritzen L, Hansen HS, Jørgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1–94

    CAS  PubMed  Google Scholar 

  107. Sinn N, Milte C, Howe PRC (2010) Oiling the brain: a review of randomised controlled trials of omega-3 fatty acids in psychopathology across the lifespan. Nutrients 2(2):128–170

    CAS  PubMed Central  PubMed  Google Scholar 

  108. O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6:537–544

    PubMed  Google Scholar 

  109. Heinrichs SC (2010) Dietary ω-3 fatty acid supplementation for optimizing neuronal structure and function. Mol Nutr Food Res 54:447–456

    CAS  PubMed  Google Scholar 

  110. Chalon S (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 75:259–269

    CAS  PubMed  Google Scholar 

  111. Wall R, Marques TM, O’Sullivan O, Ross RP, Shanahan F, Quigley EM, Dinan TG, Kiely B, Fitzgerald GF, Cotter PD, Fouhy F, Stanton C (2012) Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. Am J Clin Nutr 95(5):1278–1287

    CAS  PubMed  Google Scholar 

  112. Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12:277–288

    CAS  PubMed  Google Scholar 

  113. Hoppu U, Isolauri E, Laakso P, Matomäki J, Laitinen K (2012) Probiotics and dietary counselling targeting maternal dietary fat intake modifies breast milk fatty acids and cytokines. Eur J Nutr 51(2):211–219

    PubMed  Google Scholar 

  114. Kaplas N, Isolauri E, Lampi AM, Ojala T, Laitinen K (2007) Dietary counselling and probiotic supplementation during pregnancy modify placental phospholipid fatty acids. Lipids 45:865–870

    Google Scholar 

  115. Kankaanpaa PE, Yang B, Kallio HP, Isolauri E, Salminen SJ (2002) Influence of probiotic supplemented infant formula on composition of plasma lipids in atopic infants. J Nutr Biochem 13:364–369

    CAS  PubMed  Google Scholar 

  116. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kepler CR, Hirons KP, McNeill JJ, Tove SB (1966) Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. J Biol Chem 241:1350–1354

    CAS  PubMed  Google Scholar 

  118. Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O (2004) Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr 79:1118–1125

    CAS  PubMed  Google Scholar 

  119. Ip MM, Masso-Welch PA, Ip C (2003) Prevention of mammary cancer with conjugated linoleic acid: role of the stroma and the epithelium. J Mammary Gland Biol Neoplasia 8:103–118

    PubMed  Google Scholar 

  120. Bassaganya-Riera J, Hontecillas R, Beitz DC (2002) Colonic anti-inflammatory mechanisms of conjugated linoleic acid. Clin Nutr 21:451–459

    CAS  PubMed  Google Scholar 

  121. Kritchevsky D, Tepper SA, Wright S, Tso P, Czarnecki SK (2000) Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J Am Coll Nutr 19:472S–477S

    CAS  PubMed  Google Scholar 

  122. Taylor CG, Zahradka P (2004) Dietary conjugated linoleic acid and insulin sensitivity and resistance in rodent models. Am J Clin Nutr 79:1164S–1168S

    CAS  PubMed  Google Scholar 

  123. Clement L, Poirier H, Niot I, Bocher V, Guerro-Millo M, Krief S, Staels B, Besnard P (2002) Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409

    CAS  PubMed  Google Scholar 

  124. Fa M, Diana A, Carta G, Cordeddu L, Melis MP, Murru E, Sogos V, Banni S (2005) Incorporation and metabolism of c9, t11 and t10, c12 conjugated linoleic acid (CLA) isomers in rat brain. Biochim Biophys Acta 1736:61–66

    CAS  PubMed  Google Scholar 

  125. Nakanishi T, Koutoku T, Kawahara S, Murai A, Furuse M (2003) Dietary conjugated linoleic acid reduces cerebral prostaglandin E2 in mice. Neurosci Lett 341:135–138

    CAS  PubMed  Google Scholar 

  126. Sikorski AM, Hebert N, Swain RA (2008) Conjugated linoleic acid (CLA) inhibits new vessel growth in the mammalian brain. Brain Res 1213:35–40

    CAS  PubMed  Google Scholar 

  127. Hunt WT, Kamboj A, Anderson HD, Anderson CM (2010) Protection of cortical neurons from excitotoxicity by conjugated linoleic acid. J Neurochem 115:123–130

    CAS  PubMed  Google Scholar 

  128. Chin SF, Storkson JM, Liu W, Albright KJ, Pariza MW (1994) Conjugated linoleic acid (9,11- and 10,12-octadecadienoic acid) is produced in conventional but not germ free rats fed linoleic acid. J Nutr 124:694–701

    CAS  PubMed  Google Scholar 

  129. Kishino S, Ogawa J, Omura Y, Matsumura K, Shimizu S (2002) Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. JAOCS 79:159–163

    CAS  Google Scholar 

  130. Lin TY, Lin CW, Wang YJ (2002) Linoleic acid isomerase activity in enzyme extracts from Lactobacillus acidophilus and Propionibacterium freudenreichii ssp. shermanii. J Food Sci 67:1502–1505

    CAS  Google Scholar 

  131. Macouzet M, Robert N, Lee BH (2010) Genetic and functional aspects of linoleate isomerase in Lactobacillus acidophilus. Appl Microbiol Biotechnol 87:1737–1742

    CAS  PubMed  Google Scholar 

  132. Macouzet M, Lee BH, Robert N (2010) Genetic and structural comparison of linoleate isomerases from selected food-grade bacteria. J Appl Microbiol 109:2128–2134

    CAS  PubMed  Google Scholar 

  133. Wall R, Ross RP, Shanahan F, O’Mahony L, O’Mahony C, Coakley M, Hart O, Lawlor P, Quigley EM, Kiely B, Fitzgerald GF, Stanton C (2009) Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89(5):1393–1401

    CAS  PubMed  Google Scholar 

  134. Bassaganya-Riera J, Viladomiu M, Pedragosa M, De Simone C, Carbo A, Shaykhutdinov R, Jobin C, Arthur JC, Corl BA, Vogel H, Storr M, Hontecillas R (2012) Probiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR γ to suppress colitis. PLoS One 7(2):e31238

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Lee K, Paek K, Lee HY, Park JH, Lee Y (2007) Antiobestity effect of trans-10, cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J Appl Microbiol 103:1140–1146

    CAS  PubMed  Google Scholar 

  136. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, Paek KS, Lee Y, Park JH (2006) Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta 1761:736–744

    CAS  PubMed  Google Scholar 

  137. Druart C, Neyrinck AM, Dewulf EM, De Backer FC, Possemiers S, Van De Wiele T, Moens F, De Vuyst L, Cani PD, Larondelle Y, Delzenne NM (2013) Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice. Br J Nutr 110:998–1011

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Foundation of Ireland—funded Centre for Science, Engineering and Technology, the Alimentary Pharmabiotic Centre.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John F. Cryan or Catherine Stanton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Wall, R., Cryan, J.F., Ross, R.P., Fitzgerald, G.F., Dinan, T.G., Stanton, C. (2014). Bacterial Neuroactive Compounds Produced by Psychobiotics. In: Lyte, M., Cryan, J. (eds) Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology(), vol 817. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0897-4_10

Download citation

Publish with us

Policies and ethics