Skip to main content

FlAsH-PALM: Super-resolution Pointillist Imaging with FlAsH-Tetracysteine Labeling

  • Protocol
  • First Online:
Book cover Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Super-resolution light microscopy including pointillist methods based on single molecule localization (e.g., PALM/STORM) allow to image protein structures much smaller than the diffraction limit (200–300 nm). However, commonly used labeling strategies such as antibodies or protein fusions have several important drawbacks, including the risk to alter the function or distribution of the imaged proteins. We recently demonstrated that pointillist imaging can be performed using the alternative labeling technique known as FlAsH, which better preserves protein function, is compatible with live cell imaging, and may help reach single nanometer resolution. We applied FlAsH-PALM to visualize HIV integrase in isolated virions or infected cells, allowing us to obtain sub-diffraction resolution images of this enzyme’s spatial distribution and analyze HIV morphology without altering viral replication. The technique should also prove useful to image delicate proteins in intracellular vesicles and organelles at high resolution. Here, we present a detailed protocol in order to facilitate the application of FLAsH-PALM to other proteins and biological structures.

Mickaël Lelek and Francesca Di Nunzio have contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32

    Article  CAS  PubMed  Google Scholar 

  2. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Herbert S, Soares H, Zimmer C, Henriques R (2012) Single-molecule super-resolution microscopy: deeper and faster. Microscopy & Microanalysis 18:1419–1429

    Google Scholar 

  4. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  5. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Sci Signal 312:217

    CAS  Google Scholar 

  7. Schnell U, Dijk F, Sjollema KA, Giepmans BN (2012) Immunolabeling artifacts and the need for live-cell imaging. Nat Methods 9:152–158

    Article  CAS  PubMed  Google Scholar 

  8. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5:417–423

    Article  CAS  PubMed  Google Scholar 

  9. Enninga J, Mounier J, Sansonetti P, Van Nhieu GT (2005) Secretion of type III effectors into host cells in real time. Nat Methods 2:959–965

    Article  CAS  PubMed  Google Scholar 

  10. Müller B, Daecke J, Fackler OT, Dittmar MT, Zentgraf H, Kräusslich HG (2004) Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J Virol 78:10803–10813

    Article  PubMed Central  PubMed  Google Scholar 

  11. Engelman A, Englund G, Orenstein JM, Martin MA, Craigie R (1995) Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 69:2729–2736

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Adams SR, Campbell RE, Gross LA et al (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076

    Article  CAS  PubMed  Google Scholar 

  13. Martin BR, Giepmans BNG, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23:1308–1314

    Article  CAS  PubMed  Google Scholar 

  14. Arhel N, Genovesio A, Kim KA et al (2006) Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods 3:817–824

    Article  CAS  PubMed  Google Scholar 

  15. Andresen M, Schmitz-Salue R, Jakobs S (2004) Short tetracysteine tags to beta-tubulin demonstrate the significance of small labels for live cell imaging. Mol Biol Cell 15:5616–5622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lelek M, Di Nunzio F, Henriques R et al (2012) Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proc Natl Acad Sci U S A 109:8564–8569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI (1999) Assembly and analysis of conical models for the HIV-1 core. Science 283:80–83

    Article  CAS  PubMed  Google Scholar 

  18. Arhel N (2010) Revisiting HIV-1 uncoating. Retrovirology 7:96

    Article  PubMed Central  PubMed  Google Scholar 

  19. Di Nunzio F (2013) New insights in the role of nucleoporins: a bridge leading to concerted steps from HIV nuclear entry until integration. Virus Res 178:187–196

    Article  PubMed  Google Scholar 

  20. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7:339–340

    Article  CAS  PubMed  Google Scholar 

  21. Charneau P, Mirambeau G, Roux P, Paulous S, Buc H, Clavel F (1994) HIV-1 reverse transcription a termination step at the center of the genome. J Mol Biol 241:651–662

    Article  CAS  PubMed  Google Scholar 

  22. van de Linde S, Löschberger A, Klein T et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009

    Article  PubMed  Google Scholar 

  23. Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176

    Article  CAS  Google Scholar 

  24. Sergé A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:687–694

    Article  PubMed  Google Scholar 

  25. Yee JK, Miyanohara A, LaPorte P, Bouic K, Burns JC, Friedmann T (1994) A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 91:9564–9568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Henriques R, Griffiths C, Hesper Rego E, Mhlanga MM (2011) PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95:322–331

    Article  CAS  PubMed  Google Scholar 

  27. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pertsinidis A, Zhang Y, Chu S (2010) Subnanometre single-molecule localization, registration and distance measurements. Nature 466:647–651

    Article  CAS  PubMed  Google Scholar 

  29. Geisler C et al (2012) Drift estimation for single marker switching based imaging schemes. Opt Express 20:7274–7289

    Article  PubMed  Google Scholar 

  30. Wolter S, Löschberger A, Holm T et al (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9:1040–1041

    Article  CAS  PubMed  Google Scholar 

  31. Brede N, Lakadamyali M (2012) GraspJ: an open source, real-time analysis package for super-resolution imaging. Opt Nanoscopy 1:11

    Article  Google Scholar 

  32. Gaietta GM, Deerinck TJ, Ellisman MH (2011) Labeling tetracysteine-tagged proteins with biarsenical dyes for live cell imaging. Cold Spring Harb Protoc 2011. doi: 10.1101/pdb.prot5547

Download references

Acknowledgements

We acknowledge funding by Institut Pasteur, Région Ile-de-France (DIM Malinf), Fondation pour la Recherche Médicale (Equipe FRM 2010), Sidaction and ANRS. We thank Philippe Souque for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mickaël Lelek , Francesca Di Nunzio or Christophe Zimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lelek, M., Di Nunzio, F., Zimmer, C. (2014). FlAsH-PALM: Super-resolution Pointillist Imaging with FlAsH-Tetracysteine Labeling. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics