Skip to main content

Cyclosporines: Biosynthesis and Beyond

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The immunosuppressive properties of cyclosporine A have been widely exploited clinically, predominantly in bone marrow and organ transplantations and in the treatment of certain autoimmune diseases. Cyclosporine A is the main product of the secondary metabolism of the fungal species Tolypocladium inflatum (syn. Beauveria nivea). This cyclic undecapeptide contains three unusual, non-proteinogenic, amino acids and seven of its eleven amide nitrogens in the backbone are N-methylated. As these features cannot be introduced by classical translation, the biosynthesis of cyclosporine A is elaborated by a non-ribosomal peptide synthetase (NRPS). Cyclosporine synthetase (CySyn) is one of the most complex NRPS systems known, consisting of a single 1.7 MDa polypeptide capable of catalyzing a total of 40 partial reaction steps in the synthesis of cyclosporine A. The CySyn polypeptide can be divided into eleven semiautonomous modular units, which are composed of homologous domains responsible for the activation, modification, and polymerization (and in seven of the eleven modules, N-methylation) of the constituent amino acids of cyclosporine A. This chapter surveys the current knowledge-base on this complex multifunctional enzyme system and provides a perspective on its future development as a biosynthetic platform for the production of a new generation of safer cyclosporines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AdoMet:

S-adenosyl-l-methionine

A-domain:

Adenylation domain

Bmt:

(4R)-4-[(E)-2-butyl]-4-methyl-l-threonine

CoA:

Coenzyme A

C-domain:

Condensation domain

CsA:

Cyclosporine A

CySyn:

Cyclosporine synthetase

d-Hiv:

d-hydroxy isovaleric acid

E-domain:

Epimerization domain

N-MTase:

N-methyltransferase

NRPS:

Non-ribosomal peptide synthetase

Ppant:

4′-phosphopantetheine

PKS:

Polyketide synthase

PCP:

Peptidyl carrier protein

T-domain:

Thiolation domain

References

  1. Dreyfuss M, Härri E, Hofmann H, Kobel H, Pache W, Tcherter H. Cyclosporine-A and C new metabolites from Trichoderma-polysporum (Link Ex Pers) rifai. Eur J Appl Microbiol. 1976;3:125–33.

    Article  CAS  Google Scholar 

  2. Rüegger A, Kuhn M, Lichti H, Loosli H-R, Huguenin R, Quiquerez C, Von Wartburg A. Cyclosporine A, ein immunsuppressiv wirksamer Peptidmetabolit aus Trichoderma polysporum (LINK ex PERS.) Rifai. Helv Chim Acta. 1976;59:1075–92.

    Article  PubMed  Google Scholar 

  3. Calne RY, White DJ, Thiru S, Evans DB, Mcmaster P, Dunn DC, Craddock GN, Pentlow BD, Rolles K. Cyclosporine A in patients receiving renal allografts from cadaver donors. Lancet. 1978;2:1323–7.

    Article  CAS  PubMed  Google Scholar 

  4. Morris PJ. The impact of cyclosporine A on transplantation. Adv Surg. 1984;17:99–127.

    CAS  PubMed  Google Scholar 

  5. Borel JF, Baumann G, Chapman I, Donatsch P, Fahr A, Mueller EA, Vigouret JM. In vivo pharmacological effects of ciclosporin and some analogues. Adv Pharmacol. 1996;35:115–246.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy JR, Baqar S, Baker RH, Roberts E, Nickell SP, Cole GA. Stage-selective inhibition of rodent malaria by cyclosporine. Antimicrob Agents Chemother. 1988;32:462–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gaveriaux C, Boesch D, Boelsterli JJ, Bollinger P, Eberle MK, Hiestand P, Payne T, Traber R, Wenger R, Loor F. Overcoming multidrug resistance in Chinese hamster ovary cells in vitro by cyclosporine A (Sandimmune) and non-immunosuppressive derivatives. Br J Cancer. 1989;60:867–71.

    Article  CAS  PubMed  Google Scholar 

  8. Chase HP, Butler-Simon N, Garg SK, Hayward A, Klingensmith GJ, Hamman RF, O’brien D. Cyclosporine A for the treatment of new-onset insulin-dependent diabetes mellitus. Pediatrics. 1990;85:241–5.

    CAS  PubMed  Google Scholar 

  9. Schwabe K, Steinheider G, Lawen A, Traber R, Hildebrandt A. Reversal of multidrug resistance by novel cyclosporine A analogues and the cyclopeptolide SDZ 214-103 biosynthesized in vitro. J Cancer Res Clin Oncol. 1995;121:407–12.

    Article  CAS  PubMed  Google Scholar 

  10. Stewart T, Tsai SC, Grayson H, Henderson R, Opelz G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet. 1995;346:796–8.

    Article  CAS  PubMed  Google Scholar 

  11. Stein CM. Cyclosporine in the treatment of rheumatoid arthritis. Bull Rheum Dis. 1995;44:1–4.

    CAS  PubMed  Google Scholar 

  12. Franke EK, Luban J. Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag-cyclophilin A interaction. Virology. 1996;222:279–82.

    Article  CAS  PubMed  Google Scholar 

  13. Loor F, Tiberghien F, Wenandy T, Didier A, Traber R. Cyclosporines: structure-activity relationships for the inhibition of the human MDR1 P-glycoprotein ABC transporter. J Med Chem. 2002;45:4598–612.

    Article  CAS  PubMed  Google Scholar 

  14. Rao SN. Treatment of herpes simplex virus stromal keratitis unresponsive to topical prednisolone 1 % with topical cyclosporine 0.05 %. Am J Ophthalmol. 2006;141:771–2.

    Article  CAS  PubMed  Google Scholar 

  15. Lee J. Cyclophilin A as a new therapeutic target for Hepatitis C virus induced hepatocellular carcinoma. Korean J Physiol Pharmacol. 2013;17:375–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Von Wartburg A, Traber R. Chemistry of the natural cyclosporine metabolites. Prog Allergy. 1986;38:28–45.

    Google Scholar 

  17. Sanglier JJ, Traber R, Buck RH, Hofmann H, Kobel H. Isolation of (4R)-4-[(E)-2-butenyl]-4-methyl-L-threonine, the characteristic structural element of cyclosporines, from a blocked mutant of Tolypocladium inflatum. J Antibiot (Tokyo). 1990;43:707–14.

    Article  CAS  Google Scholar 

  18. Lawen A, Zocher R. Cyclosporine synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. J Biol Chem. 1990;265:11355–60.

    CAS  PubMed  Google Scholar 

  19. Lawen A. Biosynthesis and mechanism of action of cyclosporines. Prog Med Chem. 1996;33:53–97.

    Article  CAS  PubMed  Google Scholar 

  20. Velkov T, Lawen A. Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors—cyclosporine synthetase as a complex example. Biotechnol Annu Rev. 2003;9:151–97.

    Article  CAS  PubMed  Google Scholar 

  21. Dittmann J, Wenger RM, Kleinkauf H, Lawen A. Mechanism of cyclosporine A biosynthesis. Evidence for synthesis via a single linear undecapeptide precursor. J Biol Chem. 1994;269: 2841–6.

    CAS  PubMed  Google Scholar 

  22. Weber G, Schorgendorfer K, Schneider-Scherzer E, Leitner E. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr Genet. 1994;26:120–5.

    Article  CAS  PubMed  Google Scholar 

  23. Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, Owensby CA, Knaus BJ, Elser J, Miller D, Di Y, Mcphail KL, Spatafora JW. The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporine biosynthetic gene cluster. PLoS Genet. 2013;9:e1003496.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lawen A, Dittmann J, Schmidt B, Riesner D, Kleinkauf H. Enzymatic biosynthesis of cyclosporine A and analogues. Biochimie. 1992;74:511–6.

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt B, Riesner D, Lawen A, Kleinkauf H. Cyclosporine synthetase is a 1.4 MDa multienzyme polypeptide. Re-evaluation of the molecular mass of various peptide synthetases. FEBS Lett. 1992;307:355–60.

    Article  CAS  PubMed  Google Scholar 

  26. Hoppert M, Gentzsch C, Schörgendorfer K. Structure and localization of cyclosporine synthetase, the key enzyme of cyclosporine biosynthesis in Tolypocladium inflatum. Arch Microbiol. 2001;176:285–93.

    Article  CAS  PubMed  Google Scholar 

  27. Stachelhaus T, Schneider A, Marahiel MA. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science. 1995;269:69–72.

    Article  CAS  PubMed  Google Scholar 

  28. Stachelhaus T, Mootz HD, Bergendahl V, Marahiel MA. Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol Chem. 1998;273:22773–81.

    Article  CAS  PubMed  Google Scholar 

  29. Stachelhaus T, Marahiel MA. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett. 1995;125: 3–14.

    Article  CAS  PubMed  Google Scholar 

  30. Stachelhaus T, Marahiel MA. Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. J Biol Chem. 1995;270:6163–9.

    Article  CAS  PubMed  Google Scholar 

  31. Stachelhaus T, Huser A, Marahiel MA. Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. Chem Biol. 1996;3: 913–21.

    Article  CAS  PubMed  Google Scholar 

  32. Weber T, Baumgartner R, Renner C, Marahiel MA, Holak TA. Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. Structure. 2000;8:407–18.

    Article  CAS  PubMed  Google Scholar 

  33. Borchardt RT. S-Adenosyl-L-methionine-dependent macromolecule methyltransferases: potential targets for the design of chemotherapeutic agents. J Med Chem. 1980;23:347–57.

    Article  CAS  PubMed  Google Scholar 

  34. Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov. 2009;8:724–32.

    Article  CAS  PubMed  Google Scholar 

  35. Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem. 2011;12:206–22.

    Article  CAS  PubMed  Google Scholar 

  36. Struck AW, Thompson ML, Wong LS, Micklefield J. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. Chembiochem. 2012;13:2642–55.

    Article  CAS  PubMed  Google Scholar 

  37. Liscombe DK, Louie GV, Noel JP. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat Prod Rep. 2012;29:1238–50.

    Article  CAS  PubMed  Google Scholar 

  38. Burmester J, Haese A, Zocher R. Highly conserved N-methyltransferases as an integral part of peptide synthetases. Biochem Mol Biol Int. 1995;37:201–7.

    CAS  PubMed  Google Scholar 

  39. Hacker C, Glinski M, Hornbogen T, Doller A, Zocher R. Mutational analysis of the N-methyltransferase domain of the multifunctional enzyme enniatin synthetase. J Biol Chem. 2000;275:30826–32.

    Article  CAS  PubMed  Google Scholar 

  40. Patel HM, Walsh CT. In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry. 2001;40:9023–31.

    Article  CAS  PubMed  Google Scholar 

  41. Mahlert C, Sieber SA, Grűnewald J, Marahiel MA. Chemoenzymatic approach to enantiopure streptogramin B variants: characterization of stereoselective pristinamycin I cyclase from Streptomyces pristinaespiralis. J Am Chem Soc. 2005;127:9571–80.

    Article  CAS  PubMed  Google Scholar 

  42. Welker M, Von Döhren H. Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev. 2006;30:530–63.

    Article  CAS  PubMed  Google Scholar 

  43. Hornbogen T, Riechers SP, Prinz B, Schultchen J, Lang C, Schmidt S, Műgge C, Turkanovic S, Sűssmuth RD, Tauberger E, Zocher R. Functional characterization of the recombinant N-methyltransferase domain from the multienzyme enniatin synthetase. Chembiochem. 2007;8:1048–54.

    Article  CAS  PubMed  Google Scholar 

  44. Velkov T, Horne J, Scanlon MJ, Capuano B, Yuriev E, Lawen A. Characterization of the N-methyltransferase activities of the multifunctional polypeptide cyclosporine synthetase. Chem Biol. 2011;18:464–75.

    Article  CAS  PubMed  Google Scholar 

  45. Velkov T, Lawen A. Mapping and molecular modeling of S-adenosyl-L-methionine binding sites in N-methyltransferase domains of the multifunctional polypeptide cyclosporine synthetase. J Biol Chem. 2003;278:1137–48.

    Article  CAS  PubMed  Google Scholar 

  46. Velkov T, Lawen A. Photoaffinity labeling of the N-methyltransferase domains of cyclosporine synthetase. Photochem Photobiol. 2003;77:129–37.

    Article  CAS  PubMed  Google Scholar 

  47. Lawen A, Traber R, Geyl D, Zocher R, Kleinkauf H. Cell-free biosynthesis of new cyclosporines. J Antibiot (Tokyo). 1989;42:1283–9.

    Article  CAS  Google Scholar 

  48. Lawen A, Traber R. Substrate specificities of cyclosporine synthetase and peptolide SDZ 214-103 synthetase. Comparison of the substrate specificities of the related multifunctional polypeptides. J Biol Chem. 1993;268:20452–65.

    CAS  PubMed  Google Scholar 

  49. Dittmann J, Lawen A, Zocher R, Kleinkauf H. Isolation and partial characterization of cyclosporine synthetase from a cyclosporine non-producing mutant of Beauveria nivea. Biol Chem Hoppe Seyler. 1990;371:829–34.

    Article  CAS  PubMed  Google Scholar 

  50. Belshaw PJ, Walsh CT, Stachelhaus T. Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science. 1999;284:486–9.

    Article  CAS  PubMed  Google Scholar 

  51. Linne U, Marahiel MA. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry. 2000;39:10439–47.

    Article  CAS  PubMed  Google Scholar 

  52. Doekel S, Marahiel MA. Dipeptide formation on engineered hybrid peptide synthetases. Chem Biol. 2000;7:373–84.

    Article  CAS  PubMed  Google Scholar 

  53. Mootz HD, Schwarzer D, Marahiel MA. Construction of hybrid peptide synthetases by module and domain fusions. Proc Natl Acad Sci U S A. 2000;97:5848–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ehmann DE, Trauger JW, Stachelhaus T, Walsh CT. Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases. Chem Biol. 2000;7:765–72.

    Article  CAS  PubMed  Google Scholar 

  55. Keating TA, Marshall CG, Walsh CT, Keating AE. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol. 2002;9:522–6.

    CAS  PubMed  Google Scholar 

  56. Samel SA, Schoenafinger G, Knappe TA, Marahiel MA, Essen LO. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure. 2007;15:781–92.

    Article  CAS  PubMed  Google Scholar 

  57. Tanovic A, Samel SA, Essen LO, Marahiel MA. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science. 2008;321:659–63.

    Article  CAS  PubMed  Google Scholar 

  58. Stachelhaus T, Walsh CT. Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry. 2000;39:5775–87.

    Article  CAS  PubMed  Google Scholar 

  59. Schauwecker F, Pfennig F, Grammel N, Keller U. Construction and in vitro analysis of a new bi-modular polypeptide synthetase for synthesis of N-methylated acyl peptides. Chem Biol. 2000;7:287–97.

    Article  CAS  PubMed  Google Scholar 

  60. Linne U, Doekel S, Marahiel MA. Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases. Biochemistry. 2001;40:15824–34.

    Article  CAS  PubMed  Google Scholar 

  61. Luo L, Burkart MD, Stachelhaus T, Walsh CT. Substrate recognition and selection by the initiation module PheATE of gramicidin S synthetase. J Am Chem Soc. 2001;123:11208–18.

    Article  CAS  PubMed  Google Scholar 

  62. Luo L, Walsh CT. Kinetic analysis of three activated phenylalanyl intermediates generated by the initiation module PheATE of gramicidin S synthetase. Biochemistry. 2001;40:5329–37.

    Article  CAS  PubMed  Google Scholar 

  63. Luo L, Kohli RM, Onishi M, Linne U, Marahiel MA, Walsh CT. Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. Biochemistry. 2002;41:9184–96.

    Article  CAS  PubMed  Google Scholar 

  64. Clugston SL, Sieber SA, Marahiel MA, Walsh CT. Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst. Biochemistry. 2003;42:12095–104.

    Article  CAS  PubMed  Google Scholar 

  65. Stein DB, Linne U, Marahiel MA. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases. FEBS J. 2005;272:4506–20.

    Article  CAS  PubMed  Google Scholar 

  66. Stein DB, Linne U, Hahn M, Marahiel MA. Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis. Chembiochem. 2006;7:1807–14.

    Article  CAS  PubMed  Google Scholar 

  67. Koglin A, Mofid MR, Löhr F, Schäfer B, Rogov VV, Blum MM, Mittag T, Marahiel MA, Bernhard F, Dötsch V. Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science. 2006;312:273–6.

    Article  CAS  PubMed  Google Scholar 

  68. Bergendahl V, Linne U, Marahiel MA. Mutational analysis of the C-domain in nonribosomal peptide synthesis. Eur J Biochem. 2002;269:620–9.

    Article  CAS  PubMed  Google Scholar 

  69. Finking R, Mofid MR, Marahiel MA. Mutational analysis of peptidyl carrier protein and acyl carrier protein synthase unveils residues involved in protein-protein recognition. Biochemistry. 2004;43:8946–56.

    Article  CAS  PubMed  Google Scholar 

  70. Lai JR, Fischbach MA, Liu DR, Walsh CT. A protein interaction surface in nonribosomal peptide synthesis mapped by combinatorial mutagenesis and selection. Proc Natl Acad Sci U S A. 2006;103:5314–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Lai JR, Koglin A, Walsh CT. Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis. Biochemistry. 2006;45:14869–79.

    Article  CAS  PubMed  Google Scholar 

  72. Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature. 2000;407:215–8.

    Article  CAS  PubMed  Google Scholar 

  73. Trauger JW, Kohli RM, Walsh CT. Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase. Biochemistry. 2001;40:7092–8.

    Article  CAS  PubMed  Google Scholar 

  74. Kohli RM, Trauger JW, Schwarzer D, Marahiel MA, Walsh CT. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. Biochemistry. 2001;40:7099–108.

    Article  CAS  PubMed  Google Scholar 

  75. Kohli RM, Takagi J, Walsh CT. The thioesterase domain from a nonribosomal peptide synthetase as a cyclization catalyst for integrin binding peptides. Proc Natl Acad Sci U S A. 2002;99:1247–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Tseng CC, Bruner SD, Kohli RM, Marahiel MA, Walsh CT, Sieber SA. Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthase. Biochemistry. 2002;41:13350–9.

    Article  CAS  PubMed  Google Scholar 

  77. Brady SF, Varga SL, Freidinger RM, Schwenk DA, Mendlowski M, Holly FW, Veber DF. Practical synthesis of cyclic peptides, with an example of dependence of cyclization yield upon linear sequence. J Org Chem. 1979;44:3101–5.

    Article  CAS  Google Scholar 

  78. Wenger RM. Synthesis of cyclosporine: total syntheses of ‘cyclosporine A’ and ‘cyclosporine H’, two fungal metabolites isolated from species Tolypocladium inflatum Gams. Helv Chim Acta. 1984;67:502–25.

    Article  CAS  Google Scholar 

  79. Nitecki DE, Halpern B, Westley JW. Simple route to sterically pure dioxopiperazines. J Org Chem. 1968;33:864–6.

    Article  CAS  PubMed  Google Scholar 

  80. Gund P, Veber DF. Ease of base-catalyzed epimerization of N-methylated peptides and diketopiperazines. J Am Chem Soc. 1979;101:1885–7.

    Article  CAS  Google Scholar 

  81. Senn H, Weber C, Kobel H, Traber R. Selective 13C-labelling of cyclosporine A. Eur J Biochem. 1991;199:653–8.

    Article  CAS  PubMed  Google Scholar 

  82. Hoffmann K, Schneider-Scherzer E, Kleinkauf H, Zocher R. Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporine biosynthesis. J Biol Chem. 1994;269:12710–4.

    CAS  PubMed  Google Scholar 

  83. Billich A, Zocher R. Enzymatic synthesis of cyclosporine A. J Biol Chem. 1987;262: 17258–9.

    CAS  PubMed  Google Scholar 

  84. Traber R. Biosynthesis of cyclosporines. In: Strohl WR, editor. Biotechnology of antibiotics. 2nd ed. New York: Marcel Dekker; 1997. p. 279–314. Chapter 9.

    Chapter  Google Scholar 

  85. Kocher HP, Schneider-Scherzer E, Schörgendorfer K, Weber G. Recombinant Alanine Racemase and GAPDH from Tolypocladium. European Patent WO9425606; 1996.

    Google Scholar 

  86. Di Salvo ML, Florio R, Paiardini A, Vivoli M, D’aguanno S, Contestabile R. Alanine racemase from Tolypocladium inflatum: a key PLP-dependent enzyme in cyclosporine biosynthesis and a model of catalytic promiscuity. Arch Biochem Biophys. 2013;529:55–65.

    Article  PubMed  CAS  Google Scholar 

  87. Hensens OD, White RF, Goegelman RT, Inamine ES, Patchett AA. The preparation of [2-deutero-3-fluoro-D-Ala8] cyclosporine A by directed biosynthesis. J Antibiot (Tokyo). 1992;45:133–5.

    Article  CAS  Google Scholar 

  88. Kürnsteiner H, Zinner M, Kück U. Immunosuppressants. In: Osiewacz HD, editors. Esser K, Bennet JW, Series editors. The Mycota. A comprehensive treatise on fungi as experimental systems for basic and applied research. Volume X, Industrial Applications. Volume ed., Berlin: Springer; 2002. pp. 129–156.

    Google Scholar 

  89. Kobel H, Loosli HR, Voges R. Contribution to knowledge of the biosynthesis of cyclosporine A. Experientia. 1983;39:873–6.

    Article  CAS  PubMed  Google Scholar 

  90. Cane DE. Introduction: polyketide and nonribosomal polypeptide biosynthesis. From Collie to Coli. Chem Rev. 1997;97:2463–4.

    Article  CAS  PubMed  Google Scholar 

  91. Shen B, Kwon HJ. Macrotetrolide biosynthesis: a novel type II polyketide synthase. Chem Rec. 2002;2:389–96.

    Article  CAS  PubMed  Google Scholar 

  92. Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol. 2003;7:285–95.

    Article  CAS  PubMed  Google Scholar 

  93. Walsh CT. Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science. 2004;303:1805–10.

    Article  CAS  PubMed  Google Scholar 

  94. Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep. 2007;24:162–90.

    Article  CAS  PubMed  Google Scholar 

  95. Olano C. Hutchinson’s legacy: keeping on polyketide biosynthesis. J Antibiot (Tokyo). 2011;64:51–7.

    Article  CAS  Google Scholar 

  96. Offenzeller M, Su Z, Santer G, Moser H, Traber R, Memmert K, Schneider-Scherzer E. Biosynthesis of the unusual amino acid (4R)-4-[(E)-2-butenyl]-4-methyl-L-threonine of cyclosporine A. Identification of 3(R)-hydroxy-4(R)-methyl-6(E)-octenoic acid as a key intermediate by enzymatic in vitro synthesis and by in vivo labeling techniques. J Biol Chem. 1993;268:26127–34.

    CAS  PubMed  Google Scholar 

  97. Offenzeller M, Santer G, Totschnig K, Su Z, Moser H, Traber R, Schneider-Scherzer E. Biosynthesis of the unusual amino acid (4R)-4-[(E)-2-butenyl]-4-methyl-L-threonine of cyclosporine A: enzymatic analysis of the reaction sequence including identification of the methylation precursor in a polyketide pathway. Biochemistry. 1996;35:8401–12.

    Article  CAS  PubMed  Google Scholar 

  98. Kobel H, Traber R. Directed biosynthesis of Cyclosporines. Eur J Appl Microbiol Biotechnol. 1982;14:237–40.

    Article  CAS  Google Scholar 

  99. Traber R, Hofmann H, Kobel H. Cyclosporines—new analogues by precursor directed biosynthesis. J Antibiot (Tokyo). 1989;42:591–7.

    Article  CAS  Google Scholar 

  100. Von Wartburg A, Traber R. Cyclosporines, fungal metabolites with immunosuppressive activities. Prog Med Chem. 1988;25:1–33.

    Article  Google Scholar 

  101. Nakajima H, Hamasaki T, Tanaka K, Kimura Y, Udagawa S. Production of cyclosporine by fungi belonging to the genus Neocosmospora. Agric Biol Chem. 1989;53:2291–2.

    Article  CAS  Google Scholar 

  102. Moussaïf M, Jacques P, Schaarwächter P, Budzikiewicz H, Thonart P. Cyclosporine C is the main antifungal compound produced by Acremonium luzulae. Appl Environ Microbiol. 1990;63:1739–43.

    Google Scholar 

  103. Traber R, Dreyfuss MM. Occurrence of cyclosporines and cyclosporine-like peptolides in fungi. J Ind Microbiol Biotechnol. 1996;17:397–401.

    Article  CAS  Google Scholar 

  104. Sallam LA, El-Refai AM, Hamdy AH, El-Minofi HA, Abdel-Salam IS. Role of some fermentation parameters on cyclosporine A production by a new isolate of Aspergillus terreus. J Gen Appl Microbiol. 2003;49:321–8.

    Article  CAS  PubMed  Google Scholar 

  105. Traber R, Kuhn M, Loosli H-R, Pache W, Von Wartburg A. Neue Cyclopeptide aus Trichoderma polysporum (LINK EX PERS.) RIFAI: Die Cyclosporine B, D und E. Helv Chim Acta. 1977;60:1568–78.

    Article  CAS  PubMed  Google Scholar 

  106. Traber R, Kuhn M, Rűegger A, Lichti H, Loosli R-H, Von Wartburg A. Die Structur von Cyclosporine C. Helv Chim Acta. 1977;60:1247–55.

    Article  CAS  PubMed  Google Scholar 

  107. Traber R, Hofmann H, Loosli H-R, Ponelle M, Von Wartburg A. Neue Cyclosporine aus Tolypocladium inflatum. Die Cyclosporine K–Z. Helv Chim Acta. 1987;70:13–36.

    Article  CAS  Google Scholar 

  108. Traber R, Loosli H-R, Hofmann H, Kuhn M, Von Wartburg A. Isolierung und Strukturermittlung der neuen Cyclosporine E, F, G, H und I. Helv Chim Acta. 1982;65:1655–77.

    Article  CAS  Google Scholar 

  109. Lawen A, Traber R, Geyl D. In vitro biosynthesis of [Thr2, Leu5, D-Hiv8, Leu10] cyclosporine, a cyclosporine-related immunosuppressive peptolide. Biomed Biochim Acta. 1991;50:S260–3.

    CAS  PubMed  Google Scholar 

  110. Lawen A, Traber R, Geyl D. In vitro biosynthesis of [Thr2, Leu5, D-Hiv8, Leu10]-cyclosporine, a cyclosporine-related peptolide, with immunosuppressive activity by a multienzyme polypeptide. J Biol Chem. 1991;266:15567–70.

    CAS  PubMed  Google Scholar 

  111. Velkov T, Singaretnam LG, Lawen A. An improved purification procedure for cyclosporine synthetase. Protein Expr Purif. 2006;45:275–87.

    Article  CAS  PubMed  Google Scholar 

  112. Lawen A, Traber R, Reuille R, Ponelle M. In vitro biosynthesis of ring-extended cyclosporines. Biochem J. 1994;300(Pt 2):395–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Traber R, Kobel H, Loosli H-R, Senn H, Rosenwirth B, Lawen A. [MeIle4] Cyclosporine, a novel natural cyclosporine with anti-HIV activity: structure elucidation and biosynthesis. Antivir Chem Chemother. 1994;5:331–9.

    Article  CAS  Google Scholar 

  114. Billich A, Hammerschmid F, Peichl P, Wenger R, Zenke G, Quesniaux V, Rosenwirth B. Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporine A analog with activity against human immunodeficiency virus (HIV) type 1: interference with HIV protein-cyclophilin A interactions. J Virol. 1995;69:2451–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Steinkasserer A, Harrison R, Billich A, Hammerschmid F, Werner G, Wolff B, Peichl P, Palfi G, Schnitzel W, Mlynar E, Rosenwirth B. Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporine A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication. J Virol. 1995;69:814–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Borvak J, Chou CS, Van Dyke G, Rosenwirth B, Vitetta ES, Ramilo O. The use of cyclosporine, FK506, and SDZ NIM811 to prevent CD25- quiescent peripheral blood mononuclear cells from producing human immunodeficiency virus. J Infect Dis. 1996;174:850–3.

    Article  CAS  PubMed  Google Scholar 

  117. Mlynar E, Bevec D, Billich A, Rosenwirth B, Steinkasserer A. The non-immunosuppressive cyclosporine A analogue SDZ NIM 811 inhibits cyclophilin A incorporation into virions and virus replication in human immunodeficiency virus type 1-infected primary and growth-arrested T cells. J Gen Virol. 1997;78(Pt 4):825–35.

    Article  CAS  PubMed  Google Scholar 

  118. Rosenwirth B, Billich A, Datema R, Donatsch P, Hammerschmid F, Harrison R, Hiestand P, Jaksche H, Mayer P, Peichl P, Quesniaux V, Schatz F, Schuurman H-J, Traber R, Wenger R, Wolff B, Zenke G, Zurini M. Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog. Antimicrob Agents Chemother. 1994;38:1763–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Kocken CH, Van Der Wel A, Rosenwirth B, Thomas AW. Plasmodium vivax: in vitro antiparasitic effect of cyclosporines. Exp Parasitol. 1996;84:439–43.

    Article  CAS  PubMed  Google Scholar 

  120. Goto K, Watashi K, Murata T, Hishiki T, Hijikata M, Shimotohno K. Evaluation of the anti-hepatitis C virus effects of cyclophilin inhibitors, cyclosporine A, and NIM811. Biochem Biophys Res Commun. 1996;343:879–84.

    Article  CAS  Google Scholar 

  121. Gallay PA. Cyclophilin inhibitors. Clin Liver Dis. 2009;13:403–17.

    Article  PubMed  Google Scholar 

  122. Wolvetang EJ, Larm JA, Moutsoulas P, Lawen A. Apoptosis induced by inhibitors of the plasma membrane NADH-oxidase involves Bcl-2 and calcineurin. Cell Growth Differ. 1996;7:1315–25.

    CAS  PubMed  Google Scholar 

  123. Bennett PC, Singaretnam LG, Zhao W-Q, Lawen A, Ng KT. Peptidyl-prolyl-cis/trans-isomerase activity may be necessary for memory formation. FEBS Lett. 1998;431:386–90.

    Article  CAS  PubMed  Google Scholar 

  124. Halestrap AP. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010;38:841–60.

    Article  CAS  PubMed  Google Scholar 

  125. Wenger RM. Synthesis of Cyclosporine. I. Synthesis of enantiomerically pure (2S,3R,4R,6E)-3-hydroxy-4-methyl-2-methylamino-6-octenoic acid starting from tartaric acid. Helv Chim Acta. 1983;66:2308–21.

    Article  CAS  Google Scholar 

  126. Togni A, Pastor SD, Rihs G. Application of the gold(I)-Catalyzed aldol reaction to a stereoselective synthesis of (2S, 3R, 4R, 6E)-3-Hydroxy-4-methyl-2-(methylamino)oct-6-enoic Acid (= MeBmt), Cyclosporine’s unusual amino acid. Helv Chim Acta. 1989;72:1471–8.

    Article  CAS  Google Scholar 

  127. Durand J-O, Genet J-P. Synthesis of MeBmt C9 amino acid present in cyclosporine, and analogues. Bull Chem Soc. 1994;131:612–9.

    CAS  Google Scholar 

  128. Wenger RM. Synthesis of Cyclosporine. Part II. Synthesis of Boc-D-Ala-MeLeu-MeLeu-MeVal-OH, a part of the peptide sequence of cyclosporine, by different strategic ways and synthesis of its isomers Boc-D-Ala-MeLeu-D-MeLeu-MeVal-OH, Boc-D-MeLeu-D-MeVal-OH, and Boc-D-Ala-MeLeu-MeLeu-D-MeVal-OH as reference compounds. Helv Chim Acta. 1983;66:2672–702.

    Article  CAS  Google Scholar 

  129. Ko SY, Wenger RM. Solid-phase total synthesis of cyclosporine analogues. Helv Chim Acta. 1997;80:695–705.

    Article  CAS  Google Scholar 

  130. Wu X, Stockdill JL, Wang P, Danishefsky SJ. Total synthesis of cyclosporine: access to N-methylated peptides via isonitrile coupling reactions. J Am Chem Soc. 2010;132: 4098–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Borchert S, Patil SS, Marahiel MA. Identification of putative multifunctional peptide synthetase genes using highly conserved oligonucleotide sequences derived from known synthetases. FEMS Microbiol Lett. 1992;71:175–80.

    Article  CAS  PubMed  Google Scholar 

  132. Mootz HD, Marahiel MA. Design and application of multimodular peptide synthetases. Curr Opin Biotechnol. 1999;10:341–8.

    Article  CAS  PubMed  Google Scholar 

  133. Turgay K, Marahiel MA. A general approach for identifying and cloning peptide synthetase genes. Pept Res. 1994;7:238–41.

    CAS  PubMed  Google Scholar 

  134. Schneider A, Stachelhaus T, Marahiel MA. Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol Gen Genet. 1998;257:308–18.

    Article  CAS  PubMed  Google Scholar 

  135. Jacobsen JR, Hutchinson CR, Cane DE, Khosla C. Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. Science. 1997;277:367–9.

    Article  CAS  PubMed  Google Scholar 

  136. Cane DE, Walsh CT, Khosla C. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science. 1998;282:63–8.

    Article  CAS  PubMed  Google Scholar 

  137. Walsh CT. Combinatorial biosynthesis of antibiotics: challenges and opportunities. Chembiochem. 2002;3:125–34.

    Article  PubMed  Google Scholar 

  138. Weber G, Leitner E. Disruption of the cyclosporine synthetase gene of Tolypocladium niveum. Curr Genet. 1994;26:461–7.

    Article  CAS  PubMed  Google Scholar 

  139. Leitner E, Schneider-Scherzer E, Schörgendorfer K, Weber G. Cyclosporine synthetase. European patent application EP0578616 A2; 1994.

    Google Scholar 

  140. Leitner E, Schneider-Scherzer E, Schörgendorfer K, Weber G. Cyclosporine synthetase. U. S. patent 5,827,706; 1998.

    Google Scholar 

Download references

Acknowledgements

T. Velkov is a National Health and Medical Research Council of Australia CDA1 Industry Fellow (1003836).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons Lawen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Velkov, T., Lawen, A. (2014). Cyclosporines: Biosynthesis and Beyond. In: Martín, JF., García-Estrada, C., Zeilinger, S. (eds) Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1191-2_4

Download citation

Publish with us

Policies and ethics