Skip to main content

Photoligation Combined with Zwitterion-Modified Lipoic Acid Ligands Provides Compact and Biocompatible Quantum Dots

  • Protocol
  • First Online:
Quantum Dots: Applications in Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1199))

Abstract

We describe the design and synthesis of a series of compact ligands made of lipoic acid (LA)-based coordinating anchors and hydrophilic zwitterion groups. This ligand design is combined with a novel photoligation strategy to promote the transfer of QDs to polar and buffer media. This approach has provided hydrophilic QDs that exhibit great colloidal stability over a broad range of pHs and in the presence of cell culture media. Our photoligation strategy drastically improves previous phase transfer methods by eliminating the need for chemical reduction of the dithiolane ring using NaBH4 prior to the cap exchange, and it is adapted to several LA-based ligands. We also found that QDs stabilized with these compact zwitterionic ligands are fully compatible with metal-histidine-driven self-assembly where the protein activity is maintained after forming conjugation with the QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  2. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458

    Article  CAS  Google Scholar 

  3. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  CAS  Google Scholar 

  4. Biju V, Itoh T, Ishikawa M (2010) Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev 39(8):3031–3056

    Article  CAS  Google Scholar 

  5. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  6. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119(30):7019–7029

    Article  CAS  Google Scholar 

  7. Yu WW, Peng X (2002) Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed 41(13):2368–2371

    Article  CAS  Google Scholar 

  8. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J Phys Chem 100(2):468–471

    Article  CAS  Google Scholar 

  9. Dabbousi BO, RodriguezViejo J, Mikulec FV et al (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  CAS  Google Scholar 

  10. Pinaud F, King D, Moore HP, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126(19):6115–6123

    Article  CAS  Google Scholar 

  11. Liu WH, Choi HS, Zimmer JP et al (2007) Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J Am Chem Soc 129(47):14530–14531

    Article  CAS  Google Scholar 

  12. Mattoussi H, Mauro JM, Goldman ER et al (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49):12142–12150

    Article  CAS  Google Scholar 

  13. Nann T (2005) Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem Commun 13:1735–1736

    Article  Google Scholar 

  14. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  CAS  Google Scholar 

  15. Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123(36):8844–8850

    Article  CAS  Google Scholar 

  16. Susumu K, Uyeda HT, Medintz IL et al (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129(45):13987–13996

    Article  CAS  Google Scholar 

  17. Liu W, Howarth M, Greytak AB et al (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130(4):1274–1284

    Article  CAS  Google Scholar 

  18. Palui G, Na HB, Mattoussi H (2012) Poly(ethylene glycol)-based multidentate oligomers for biocompatible semiconductor and gold nanocrystals. Langmuir 28(5):2761–2772

    Article  CAS  Google Scholar 

  19. Muro E, Pons T, Lequeux N et al (2010) Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging. J Am Chem Soc 132(13):4556–4557

    Article  CAS  Google Scholar 

  20. Susumu K, Oh E, Delehanty JB et al (2011) Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J Am Chem Soc 133(24):9480–9496

    Article  CAS  Google Scholar 

  21. Han HS, Martin JD, Lee J et al (2013) Spatial Charge configuration regulates nanoparticle transport and binding behavior in vivo. Angew Chem Int Ed 52(5):1414–1419

    Article  CAS  Google Scholar 

  22. Park J, Nam J, Won N et al (2011) Compact and stable quantum dots with positive, negative, or zwitterionic surface: specific cell interactions and non-specific adsorptions by the surface charges. Adv Funct Mater 21(9): 1558–1566

    Article  CAS  Google Scholar 

  23. Palui G, Avellini T, Zhan NQ et al (2012) Photoinduced phase transfer of luminescent quantum dots to polar and aqueous media. J Am Chem Soc 134(39):16370–16378

    Article  CAS  Google Scholar 

  24. Zhan N, Palui G, Grise H et al (2013) Combining ligand design with photoligation to provide compact, colloidally stable, and easy to conjugate quantum dots. ACS Appl Mater Interfaces 5(8):2861–2869

    Article  CAS  Google Scholar 

  25. Bucher G, Lu C, Sander W (2005) The photochemistry of lipoic acid: photoionization and observation of a triplet excited state of a disulfide. Chem Phys Chem 6(12):2607–2618

    CAS  Google Scholar 

  26. Susumu K, Uyeda HT, Medintz IL, Mattoussi H (2007) Design of biotin-functionalized luminescent quantum dots. J Biomed Biotechnol. doi:10.1155/2007/90651, Article ID 90651

    Google Scholar 

  27. Clapp AR, Goldman ER, Mattoussi H (2006) Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat Protoc 1(3):1258–1266

    Article  CAS  Google Scholar 

  28. Qu LH, Peng ZA, Peng XG (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1(6):333–337

    Article  CAS  Google Scholar 

  29. Talapin DV, Nelson JH, Shevchenko EV et al (2007) Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett 7(10): 2951–2959

    Article  CAS  Google Scholar 

  30. Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5(2): 154–168

    Article  CAS  Google Scholar 

  31. Giovanelli E, Muro E, Sitbon G et al (2012) Highly enhanced affinity of multidentate versus bidentate zwitterionic ligands for long-term quantum dot bioimaging. Langmuir 28(43): 15177–15184

    Article  CAS  Google Scholar 

  32. Leatherdale CA, Woo WK, Mikulec FV, Bawendi MG (2002) On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B 106(31):7619–7622

    Article  CAS  Google Scholar 

  33. Roullier V, Clarke S, You C et al (2009) High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ tris-nitrilotriacetic acid quantum dot conjugates. Nano Lett 9(3):1228–1234

    Article  CAS  Google Scholar 

  34. Kogot JM, England HJ, Strouse GF, Logan TM (2008) Single peptide assembly onto a 1.5 nm Au surface via a histidine tag. J Am Chem Soc 130(48):16156–16157

    Article  CAS  Google Scholar 

  35. Medintz IL, Pons T, Susumu K et al (2009) Resonance energy transfer between luminescent quantum dots and diverse fluorescent protein acceptors. J Phys Chem C 113(43): 18552–18561

    Article  CAS  Google Scholar 

  36. Goldman ER, Medintz IL, Whitley JL et al (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127(18): 6744–6751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank FSU and the National Science Foundation (NSF‐CHE, # 1058957) for financial support. We also thank Tommaso Avellini, Anshika Kapur, Wentao Wang, Xin Ji, Fadi Aldeek, and Malak Safi for the helpful discussions and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedi Mattoussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhan, N., Palui, G., Grise, H., Mattoussi, H. (2014). Photoligation Combined with Zwitterion-Modified Lipoic Acid Ligands Provides Compact and Biocompatible Quantum Dots. In: Fontes, A., Santos, B. (eds) Quantum Dots: Applications in Biology. Methods in Molecular Biology, vol 1199. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1280-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1280-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1279-7

  • Online ISBN: 978-1-4939-1280-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics