Skip to main content

Theoretical Modeling of Oxide-Photocatalysts for PEC Water Splitting

  • Chapter
  • First Online:
Materials and Processes for Solar Fuel Production

Part of the book series: Nanostructure Science and Technology ((NST,volume 174))

  • 1465 Accesses

Abstract

For the last few decades, oxide materials have been one of the primary focuses for studies of photocatalysts for hydrogen production by splitting water. So far, under visible-light illumination, this approach has not been very successful; only under ultraviolet radiation oxides have shown some limited success. Despite the fact that oxides are in general stable, they suffer from wide bandgap, high resistivity, and sometimes poor optical absorption at the fundamental gap. Therefore, to improve the performance, it is important to understand the fundamental problems of photo-conduction properties in oxides at the electronic level. Density functional theory and its various extensions can provide useful insights regarding these problems. In addition, theory/computational studies can guide as well as predict novel oxides materials. In this chapter we will discuss some of the challenging aspects of the oxide photocatalysts from the theoretical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen, M. L. Conceptual progress for explaining and predicting semiconductor properties. Journal of Materials Research 2011, 26, 2815-2825.

    Article  CAS  Google Scholar 

  2. Fischer, C. C.; Tibbetts, K. J.; Morgan, D.; Ceder, G. Predicting crystal structure by merging data mining with quantum mechanics. Nat Mater 2006, 5, 641-646.

    Article  CAS  Google Scholar 

  3. Cramer, C. J.; Truhlar, D. G. Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics 2009, 11, 10757-10816.

    Article  CAS  Google Scholar 

  4. Neugebauer, J.; Hickel, T. Density functional theory in materials science. Wiley Interdisciplinary Reviews: Computational Molecular Science 2013, 3, 438-448.

    CAS  Google Scholar 

  5. Van de Walle, C. G.; Neugebauer, J. First-principles calculations for defects and impurities: Applications to III-nitrides. Journal of Applied Physics 2004, 95, 3851-3879.

    Article  Google Scholar 

  6. Huang, P.; Carter, E. A. Advances in Correlated Electronic Structure Methods for Solids, Surfaces, and Nanostructures. Annual Review of Physical Chemistry 2008, 59, 261-290.

    Article  CAS  Google Scholar 

  7. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy 2002, 27, 991-1022.

    Article  CAS  Google Scholar 

  8. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences 2006, 103, 15729-15735.

    Article  CAS  Google Scholar 

  9. Miller, E. L.; Gaillard, N.; Kaneshiro, J.; DeAngelis, A.; Garland, R. Progress in new semiconductor materials classes for solar photoelectrolysis. International Journal of Energy Research 2010, 34, 1215-1222.

    Article  CAS  Google Scholar 

  10. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.

    Article  CAS  Google Scholar 

  11. Gratzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.

    Article  CAS  Google Scholar 

  12. Huda, M. N.; Al-Jassim, M. M.; Turner, J. A. Mott insulators: An early selection criterion for materials for photoelectrochemical H[sub 2] production. Journal of Renewable and Sustainable Energy 2011, 3, 053101.

    Article  Google Scholar 

  13. Nie, X. L.; Wei, S. H.; Zhang, S. B. Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides. Physical Review Letters 2002, 88, 066405.

    Google Scholar 

  14. Huda, M. N.; Yan, Y.; Walsh, A.; Wei, S.-H.; Al-Jassim, M. M. Symmetry-breaking-induced enhancement of visible light absorption in delafossite alloys. Applied Physics Letters 2009, 94, 251907.

    Google Scholar 

  15. Ahn, K.-S.; Yan, Y.; Al-Jassim, M. Band gap narrowing of ZnO:N films by varying rf sputtering power in O[sub 2]/N[sub 2] mixtures. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2007, 25, L23-L26.

    Article  CAS  Google Scholar 

  16. Cole, B.; Marsen, B.; Miller, E.; Yan, Y.; To, B.; Jones, K.; Al-Jassim, M. Evaluation of Nitrogen Doping of Tungsten Oxide for Photoelectrochemical Water Splitting. The Journal of Physical Chemistry C 2008, 112, 5213-5220.

    Article  CAS  Google Scholar 

  17. Di Valentin, C.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Paganini, M. C.; Giamello, E. N-doped TiO2: Theory and experiment. Chemical Physics 2007, 339, 44-56.

    Article  Google Scholar 

  18. Huda, M. N.; Yan, Y.; Wei, S.-H.; Al-Jassim, M. M. Exchange-induced negative-U charge order in N-doped WO3: A spin-Peierls-like system. Physical Review B 2009, 80, 115118.

    Article  Google Scholar 

  19. Ahn, K.-S.; Yan, Y.; Shet, S.; Deutsch, T.; Turner, J.; Al-Jassim, M. Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Applied Physics Letters 2007, 91, 231909.

    Article  Google Scholar 

  20. Huda, M.; Yan, Y.; Wei, S.-H.; Al-Jassim, M. Electronic structure of ZnO:GaN compounds: Asymmetric bandgap engineering. Physical Review B 2008, 78, 195204.

    Article  Google Scholar 

  21. Nozik, A. J. Photochemical diodes. Applied Physics Letters 1977, 30, 567-569.

    Article  CAS  Google Scholar 

  22. Zhang, S. B.; Wei, S. H.; Zunger, A. Microscopic Origin of the Phenomenological Equilibrium “Doping Limit Rule” in n-Type III-V Semiconductors. Physical Review Letters 2000, 84, 1232-1235.

    Article  CAS  Google Scholar 

  23. Wei, S.-H. Overcoming the doping bottleneck in semiconductors. Computational Materials Science 2004, 30, 337-348.

    Article  CAS  Google Scholar 

  24. Ingram, B. J.; González, G. B.; Mason, T. O.; Shahriari, D. Y.; Barnabè, A.; Ko, D.; Poeppelmeier, K. R. Transport and Defect Mechanisms in Cuprous Delafossites. 1. Comparison of Hydrothermal and Standard Solid-State Synthesis in CuAlO2. Chemistry of Materials 2004, 16, 5616-5622.

    Article  CAS  Google Scholar 

  25. Buljan, A.; Llunell, M.; Ruiz, E.; Alemany, P. Color and conductivity in Cu2O and CuAlO2: A theoretical analysis of d(10)center dot center dot center dot d(10) interactions in solid-state compounds. Chemistry of Materials 2001, 13, 338-344.

    Article  CAS  Google Scholar 

  26. Saadi, S.; Bouguelia, A.; Derbal, A.; Trari, M. Hydrogen photoproduction over new catalyst CuLaO2. Journal of Photochemistry and Photobiology a-Chemistry 2007, 187, 97-104.

    Article  CAS  Google Scholar 

  27. Younsi, M.; Saadi, S.; Bouguelia, A.; Aider, A.; Trari, M. Synthesis and characterization of oxygen-rich delafossite CuYO2 + x—Application to H2-photo production. Solar Energy Materials and Solar Cells 2007, 91, 1102-1109.

    Article  CAS  Google Scholar 

  28. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6, 15-50.

    Article  CAS  Google Scholar 

  29. Kresse, G.; Furthmuumlller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996, 54, 11169.

    Article  CAS  Google Scholar 

  30. Gajdoscaron, M.; Hummer, K.; Kresse, G.; Furthm; uuml; ller, J.; Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Physical Review B 2006, 73, 045112.

    Google Scholar 

  31. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Physical Review B 1998, 57, 1505-1509.

    Article  CAS  Google Scholar 

  32. Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B 1991, 44, 943.

    Article  CAS  Google Scholar 

  33. Huda, M. N.; Yan, Y.; Walsh, A.; Wei, S.-H.; Al-Jassim, M. M. Group-IIIA versus IIIB delafossites: Electronic structure study. Physical Review B 2009, 80, 035205.

    Article  Google Scholar 

  34. Zhang, S. B.; Wei, S.-H.; Zunger, A. A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI[sub 2] compounds. Journal of Applied Physics 1998, 83, 3192-3196.

    Article  CAS  Google Scholar 

  35. Yamamoto, T.; Katayama-Yoshida, H. Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO. Japanese Journal of Applied Physics 1999, 38, L166.

    Article  CAS  Google Scholar 

  36. Yan, Y.; Zhang, S. B.; Pantelides, S. T. Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO. Physical Review Letters 2001, 86, 5723.

    Article  CAS  Google Scholar 

  37. Wang, L. G.; Zunger, A. Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of p-Type ZnO. Physical Review Letters 2003, 90, 256401.

    Article  CAS  Google Scholar 

  38. Yan, Y.; Li, J.; Wei, S.-H.; Al-Jassim, M. M. Possible Approach to Overcome the Doping Asymmetry in Wideband Gap Semiconductors. Physical Review Letters 2007, 98, 135506.

    Article  Google Scholar 

  39. Li, J.; Wei, S.-H.; Li, S.-S.; Xia, J.-B. Design of shallow acceptors in ZnO: First-principles band-structure calculations. Physical Review B 2006, 74, 081201.

    Article  Google Scholar 

  40. Liu, L.; Xu, J.; Wang, D.; Jiang, M.; Wang, S.; Li, B.; Zhang, Z.; Zhao, D.; Shan, C.-X.; Yao, B.; Shen, D. Z. p-Type Conductivity in N-Doped ZnO: The Role of the NZn-VO Complex. Physical Review Letters 2012, 108, 215501.

    Google Scholar 

  41. Huda, M. N.; Yan, Y.; Al-Jassim, M. M. The delocalized nature of holes in (Ga, N) cluster-doped ZnO. Journal of Physics: Condensed Matter 2012, 24, 415503.

    Google Scholar 

  42. Yan, Y.; Ahn, K. S.; Shet, S.; Deutsch, T.; Huda, M.; Wei, S. H.; Turner, J.; Al-Jassim, M. M.: Band gap reduction of ZnO for photoelectrochemical splitting of water - art. no. 66500H. In Solar Hydrogen and Nanotechnology II; Guo, J., Ed.; Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie), 2007; Vol. 6650; pp. H6500-H6500.

    Google Scholar 

  43. Huda, M. N.; Deutsch, T. G.; Sarker, P.; Turner, J. A. Electronic structure study of N, O related defects in GaP for photoelectrochemical applications. Journal of Materials Chemistry A 2013, 1, 8425-8431.

    Article  CAS  Google Scholar 

  44. Huda, M. N.; Yan, Y. F.; Moon, C. Y.; Wei, S. H.; Al-Jassim, M. M. Density-functional theory study of the effects of atomic impurity on the band edges of monoclinic WO3. Physical Review B 2008, 77, 195102.

    Article  Google Scholar 

  45. Janáky, C.; Rajeshwar, K.; de Tacconi, N. R.; Chanmanee, W.; Huda, M. N. Tungsten-based oxide semiconductors for solar hydrogen generation. Catalysis Today 2013, 199, 53-64.

    Article  Google Scholar 

  46. Sarker, P.; Prasher, D.; Gaillard, N.; Huda, M. N. Predicting a new photocatalyst and its electronic properties by density functional theory. Journal of Applied Physics 2013, 114, 133508.

    Google Scholar 

  47. Ruiz-Fuertes, J.; Errandonea, D.; Segura, A.; Manjón, F. J.; Zhu, Z.; Tu, C. Y. Growth, characterization, and high-pressure optical studies of CuWO4. High Pressure Research 2008, 28, 565-570.

    Article  CAS  Google Scholar 

  48. Forsyth, J. B.; Wilkinson, C.; Zvyagin, A. I. The antiferromagnetic structure of copper tungstate, CuWO4. Journal of Physics: Condensed Matter 1991, 3, 8433.

    CAS  Google Scholar 

  49. Murugesan, S.; Huda, M. N.; Yan, Y.; Al-Jassim, M. M.; Subramanian, V. Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis. The Journal of Physical Chemistry C 2010, 114, 10598-10605.

    Article  CAS  Google Scholar 

  50. Kudo, A.; Hijii, S. H-2 or O-2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6 s(2) configuration and d(0) transition metal ions. Chemistry Letters 1999, 1103-1104.

    Google Scholar 

  51. Kako, T.; Zou, Z.; Ye, J. Photocatalytic oxidation of 2-propanol in the gas phase over cesium bismuth niobates under visible light irradiation. Research on Chemical Intermediates 2005, 31, 359-364.

    Article  CAS  Google Scholar 

  52. Ikarashi, K.; Sato, J.; Kobayashi, H.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d(10) configuration. Journal of Physical Chemistry B 2002, 106, 9048-9053.

    Article  CAS  Google Scholar 

  53. Hector, A. L.; Wiggin, S. B. Synthesis and structural study of stoichiometric BiTi2O7 pyrochlore. Journal of Solid State Chemistry 2004, 177, 139-145.

    Article  CAS  Google Scholar 

  54. Kavan, L.; Gratzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, H. J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. Journal of the American Chemical Society 1996, 118, 6716-6723.

    Article  CAS  Google Scholar 

  55. Mo, S. D.; Ching, W. Y. Electronic and Optical-Properties of 3 Phases of Titanium-Dioxide—Rutile, Anatase, and Brookite. Physical Review B 1995, 51, 13023-13032.

    Article  CAS  Google Scholar 

  56. Zhang, L. W.; Fu, H. B.; Zhang, C.; Zhu, Y. F. Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst. Journal of Physical Chemistry C 2008, 112, 3126-3133.

    Article  CAS  Google Scholar 

  57. Vidal, J.; Trani, F.; Bruneval, F.; Marques, M. A. L.; Botti, S. Effects of Electronic and Lattice Polarization on the Band Structure of Delafossite Transparent Conductive Oxides. Physical Review Letters 2010, 104, 136401.

    Article  Google Scholar 

  58. Huda, M. N.; Yan, Y.; Walsh, A.; Wei, S.-H.; Al-Jassim, M. M. Symmetry-breaking-induced enhancement of visible light absorption in delafossite alloys. Applied Physics Letters 2009, 94, 251907.

    Article  Google Scholar 

  59. Takeuchi, S.; Suzuki, K. Stacking Fault Energies of Tetrahedrally Coordinated Crystals. physica status solidi (a) 1999, 171, 99-103.

    Google Scholar 

  60. Walsh, A.; Chen, S.; Wei, S.-H.; Gong, X.-G. Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Advanced Energy Materials 2012, 2, 400-409.

    Article  CAS  Google Scholar 

  61. Pranab, S.; Al-Jassim, M. M.; Huda, M. N. Theoretical study of the stability of single phase kesterite-Cu2ZnSnS4. To be published 2014.

    Google Scholar 

  62. de Tacconi, N. R.; Timmaji, H. K.; Chanmanee, W.; Huda, M. N.; Sarker, P.; Janáky, C.; Rajeshwar, K. Photocatalytic Generation of Syngas Using Combustion-Synthesized Silver Bismuth Tungstate. ChemPhysChem 2012, 13, 2945-2955.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the coauthors with whom most of the original works reviewed here were performed. The author also gratefully acknowledges the funding from the National Science Foundation (NSF) and from the National Renewable Energy Laboratory (NREL) where most of the original researches were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad N. Huda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huda, M.N. (2014). Theoretical Modeling of Oxide-Photocatalysts for PEC Water Splitting. In: Viswanathan, B., Subramanian, V., Lee, J. (eds) Materials and Processes for Solar Fuel Production. Nanostructure Science and Technology, vol 174. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1628-3_6

Download citation

Publish with us

Policies and ethics