Skip to main content

Site-specific Integration of Bacterial Artificial Chromosomes into Human Cells

  • Protocol
  • First Online:
Book cover Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1227))

  • 2108 Accesses

Abstract

Gene therapy of inherited diseases requires long-term maintenance of the corrective transgene. Stable integration of the introduced DNA molecule into one of the host cell chromosomes is the simplest strategy for achieving this. However, genotoxicity resulting from random insertion of the transgene raises serious safety concerns that must be addressed if gene therapy is to enter the clinical mainstream. The following method makes use of the Rep integrase of adeno-associated virus to insert a transgene into the human AAVS1 site, a known “safe harbor” region within the human genome. This approach has the potential for application to novel gene therapy strategies for improved safety. In addition, with this method it is also possible to create cell lines carrying BAC transgenes in the AAVS1 site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Shizuya H, Kouros-Mehr H (2001) The development and applications of the bacterial artificial chromosome cloning system. Keio J Med 50:26–30

    Article  PubMed  CAS  Google Scholar 

  3. Wade-Martins R, Smith ER, Tyminski E, Chiocca EA, Saeki Y (2001) An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 19:1067–1070

    Article  PubMed  CAS  Google Scholar 

  4. Vadolas J, Wardan H, Bosmans M, Zaibak F, Jamsai D, Voullaire L, Williamson R, Ioannou PA (2005) Transgene copy number-dependent rescue of murine beta-globin knockout mice carrying a 183 kb human beta-globin BAC genomic fragment. Biochim Biophys Acta 1728:150–162

    Article  PubMed  CAS  Google Scholar 

  5. Trobridge GD (2011) Genotoxicity of retroviral hematopoietic stem cell gene therapy. Expert Opin Biol Ther 11:581–593

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Wu C, Dunbar CE (2011) Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity. Front Med 5:356–371

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  8. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Wirt SE, Porteus MH (2012) Development of nuclease-mediated site-specific genome modification. Curr Opin Immunol 24:609–616

    Article  PubMed  CAS  Google Scholar 

  10. Sadelain M, Papapetrou EP, Bushman FD (2011) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12:51–58

    PubMed  Google Scholar 

  11. Linden RM, Ward P, Giraud C, Winocour E, Berns KI (1996) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 93:11288–11294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Philpott NJ, Gomos J, Berns KI, Falck-Pedersen E (2002) A p5 integration efficiency element mediates Rep-dependent integration into AAVS1 at chromosome 19. Proc Natl Acad Sci U S A 99:12381–12385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Howden SE, Voullaire L, Wardan H, Williamson R, Vadolas J (2008) Site-specific, Rep-mediated integration of the intact beta-globin locus in the human erythroleukaemic cell line K562. Gene Ther 15:1372–1383

    Article  PubMed  CAS  Google Scholar 

  14. Amiss TJ, McCarty DM, Skulimowski A, Samulski RJ (2003) Identification and characterization of an adeno-associated virus integration site in CV-1 cells from the African green monkey. J Virol 77:1904–1915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Van Rensburg R, Beyer I, Yao X-Y, Wang H, Denisenko O, Li Z-Y, Russell DW, Miller DG, Gregory P, Holmes M et al (2013) Chromatin structure of two genomic sites for targeted transgene integration in induced pluripotent stem cells and hematopoietic stem cells. Gene Ther 20:201–214

    Article  PubMed  PubMed Central  Google Scholar 

  16. Howden SE, Voullaire L, Vadolas J (2008) The transient expression of mRNA coding for Rep protein from AAV facilitates targeted plasmid integration. J Gene Med 10:42–50

    Article  PubMed  CAS  Google Scholar 

  17. Osoegawa K, Mammoser AG, Wu C, Frengen E, Zeng C, Catanese JJ, de Jong PJ (2001) A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res 11: 483–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health and Medical Research Council; the Murdoch Children’s Research Institute; the Victorian Government’s Operational Infrastructure Support Program; and Thalassaemia Australia and Thalassaemia Society of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bradley McColl or Jim Vadolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

McColl, B., Howden, S., Vadolas, J. (2015). Site-specific Integration of Bacterial Artificial Chromosomes into Human Cells. In: Narayanan, K. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 1227. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1652-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1652-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1651-1

  • Online ISBN: 978-1-4939-1652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics