Skip to main content

Scanning Fluorescence Correlation Spectroscopy on Biomembranes

  • Protocol
  • First Online:
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

Fluorescence correlation spectroscopy (FCS) is a powerful quantitative method to study dynamical properties of biophysical systems. It exploits the temporal autocorrelation of fluorescence intensity fluctuations originating from a tiny volume (~fL). A theoretical model function can be then fitted to the measured auto-correlation curve to obtain physical parameters such as local concentration and diffusion time. However, the application of FCS on membranes is coupled to several difficulties like accurate positioning and stability of the set-up.

In this book chapter, we explain the theoretical framework of point FCS and Scanning FCS (SFCS), which is a variation especially suitable for membrane studies. We present a list of materials necessary for SFCS studies on Giant Unilamellar Vesicles (GUVs). Finally, we provide simple protocols for the preparation of GUVs, calibration of the microscope setup, and acquisition and analysis of SFCS data to determine diffusion coefficients and concentrations of fluorescent particles embedded in lipid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rigler R, Elson E (2001) Fluorescence correlation spectroscopy: theory and applications. Springer, New York

    Book  Google Scholar 

  2. Bacia K, Schwille P (2003) A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods 29:74–85

    Article  PubMed  CAS  Google Scholar 

  3. Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  4. Aragon SR, Pecora R (1975) Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers 14:119–137

    Article  CAS  Google Scholar 

  5. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  6. Koppel D (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10:1938–1945

    Article  Google Scholar 

  7. Koppel DE, Axelrod D, Schlessinger J et al (1976) Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J 16:1315–1329

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  PubMed  CAS  Google Scholar 

  9. Magde D, Elson EL, Webb WW (1978) Fluorescence correlation spectroscopy. III. Uniform translation and lamellar flow. Biopolymers 17:361–376

    Article  CAS  Google Scholar 

  10. Fahey PF, Koppel DE, Barak LS et al (1977) Lateral diffusion in planar lipid bilayers. Science 195:305–306

    Article  PubMed  CAS  Google Scholar 

  11. Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36:176–182

    Article  PubMed  CAS  Google Scholar 

  12. Korlach J, Schwille P, Webb WW et al (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci 96:8461–8466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3:83–89

    Article  PubMed  CAS  Google Scholar 

  14. Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–166

    Article  PubMed  CAS  Google Scholar 

  15. Hess ST, Huang S, Heikal AA et al (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41:697–705

    Article  PubMed  CAS  Google Scholar 

  16. Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4:963–973

    Article  PubMed  CAS  Google Scholar 

  17. Petrov E, Schwille P (2008) State of the art and novel trends in fluorescence correlation spectroscopy. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements II: Bioanalytical and biomedical applications. Springer, Berlin

    Google Scholar 

  18. Ries J, Schwille P (2008) New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10:3487–3497

    Article  PubMed  CAS  Google Scholar 

  19. Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34:383–408

    Article  PubMed  CAS  Google Scholar 

  20. Thompson NL, Lieto AM, Allen NW (2002) Recent advances in fluorescence correlation spectroscopy. Curr Opin Struct Biol 12:634–641

    Article  PubMed  Google Scholar 

  21. Rigler R, Mets Ü, Widengren J (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175

    CAS  Google Scholar 

  22. Ries J, Weidemann T, Schwille P (2012) Fluorescence correlation spectroscopy. In: Egelman E (ed) Comprehensive biophysics. Academic, New York, pp 210–245

    Chapter  Google Scholar 

  23. Tcherniak A, Reznik C, Link S et al (2009) Fluorescence correlation spectroscopy: criteria for analysis in complex systems. Anal Chem 81:746–754

    Article  PubMed  CAS  Google Scholar 

  24. Ries J, Chiantia S, Schwille P (2009) Accurate determination of membrane dynamics with line-scan FCS. Biophys J 96:1999–2008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915–1924

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2:2842–2856

    Article  PubMed  CAS  Google Scholar 

  27. Dertinger T, Loman A, Ewers B et al (2008) The optics and performance of dual-focus fluorescence correlation spectroscopy. Opt Express 16:14353–14368

    Article  PubMed  Google Scholar 

  28. Ries J, Petrásek Z, García-Sáez AJ et al (2010) A comprehensive framework for fluorescence cross-correlation spectroscopy. N J Phys 12

    Google Scholar 

  29. Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss 81:303

    Article  CAS  Google Scholar 

  30. Chiantia S, Schwille P, Klymchenko AS et al (2011) Asymmetric GUVs prepared by MbetaCD-mediated lipid exchange: an FCS study. Biophys J 100:L1–L3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Chiantia S, Ries J, Schwille P (2009) Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta 1788:225–233

    Article  PubMed  CAS  Google Scholar 

  32. Bacia K, Schuette CG, Kahya N et al (2004) SNAREs prefer liquid-disordered over “raft” (liquid-ordered) domains when reconstituted into giant unilamellar vesicles. J Biol Chem 279:37951–37955

    Article  PubMed  CAS  Google Scholar 

  33. Doeven MK, Folgering JH, Krasnikov V et al (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88:1134–1142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Garcia-Saez AJ, Ries J, Orzaez M et al (2009) Membrane promotes tBID interaction with BCL(XL). Nat Struct Mol Biol 16:1178–1185

    Article  PubMed  CAS  Google Scholar 

  35. Kahya N, Wiersma DA, Poolman B et al (2002) Spatial organization of bacteriorhodopsin in model membranes. Light-induced mobility changes. J Biol Chem 277:39304–39311

    Article  PubMed  CAS  Google Scholar 

  36. Steringer JP, Bleicken S, Andreas H et al (2012) Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J Biol Chem 287:27659–27669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Montes LR, Alonso A, Goni FM et al (2007) Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys J 93:3548–3554

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Magatti D, Ferri F (2001) Fast multi-t real-time software correlator for dynamic light scattering. Appl Opt 40:4011–4021

    Article  PubMed  CAS  Google Scholar 

  39. Chiantia S, Kahya N, Schwille P (2007) Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study. Langmuir 23:7659–7665

    Article  PubMed  CAS  Google Scholar 

  40. Marks KM, Nolan GP (2006) Chemical labeling strategies for cell biology. Nat Methods 3:591–596

    Article  PubMed  CAS  Google Scholar 

  41. Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1:13–21

    Article  PubMed  CAS  Google Scholar 

  42. Angelova MI, Dimitrov DS (1987) Swelling of charged lipids and formation of liposomes on electrode surfaces. Mol Cryst Liq Cryst 152:89–104

    CAS  Google Scholar 

  43. Dimitrov DS, Angelova MI (1988) Lipid swelling and liposome formation mediated by electric fields. Bioelectrochem Bioenerg 19:323–336

    Article  CAS  Google Scholar 

  44. Angelova MI, Soléau S, Méléard P (1992) Preparation of giant vesicles by external AC fields. Kinetics and applications. Prog Coll Polym Sci 89:127–131

    Article  CAS  Google Scholar 

  45. Politano TJ, Froude VE, Jing B et al (2010) AC-electric field dependent electroformation of giant lipid vesicles. Colloids Surf B Biointerfaces 79:75–82

    Article  PubMed  CAS  Google Scholar 

  46. Enderlein J, Gregor I, Patra D et al (2005) Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem 6:2324–2336

    Article  PubMed  CAS  Google Scholar 

  47. Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Culbertson CT, Jacobson SC, Michael Ramsey J (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56:365–373

    Article  PubMed  CAS  Google Scholar 

  49. Dertinger T, Pacheco V, von der Hocht I et al (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8:433–443

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana J. García-Sáez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hermann, E., Ries, J., García-Sáez, A.J. (2015). Scanning Fluorescence Correlation Spectroscopy on Biomembranes. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics