Skip to main content

Theory of Locomotion Through Complex Fluids

  • Chapter
  • First Online:
Complex Fluids in Biological Systems

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Microorganisms such as bacteria often swim in fluid environments that cannot be classified as Newtonian. Many biological fluids contain polymers or other heterogeneities which may yield complex rheology. For a given set of boundary conditions on a moving organism, flows can be substantially different in complex fluids, while non-Newtonian stresses can alter the gait of the microorganisms themselves. Heterogeneities in the fluid may also be characterized by length scales on the order of the organism itself leading to additional dynamic complexity. In this chapter we present a theoretical overview of small-scale locomotion in complex fluids with a focus on recent efforts quantifying the impact of non-Newtonian rheology on swimming microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.F. Katz, R.N. Mills, T.R. Pritchett, J. Reprod. Fertil. 53, 259 (1978)

    Article  Google Scholar 

  2. P.F. Dunn, B.F. Picologlou, Biorheol. 13, 379 (1976)

    Google Scholar 

  3. S.S. Suarez, A.A. Pacey, Human Reprod. Update 12, 23 (2006)

    Article  Google Scholar 

  4. S.S. Suarez, D.F. Katz, D.H. Owen, J.B. Andrew, R.L. Powell, Biol. Reprod. 44, 375 (1991)

    Article  Google Scholar 

  5. S.S. Suarez, X.B. Dai, Biol. Reprod. 46, 686 (1992)

    Article  Google Scholar 

  6. J.P. Celli, B.S. Turner, N.H. Afdhal, S. Keates, I. Ghiran, C.P. Kelly, R.H. Ewoldt, G.H. McKinley, P. So, S. Erramilli, R. Bansil, Proc. Natl. Acad. Sci. USA 106, 14321 (2009)

    Article  ADS  Google Scholar 

  7. E.M. Purcell, Am. J. Phys. 45, 11 (1977)

    Article  ADS  Google Scholar 

  8. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Lauga, Europhys. Lett. 86, 64001 (2009)

    Article  ADS  Google Scholar 

  10. H.A. Stone, A.D.T. Samuel, Phys. Rev. Lett. 77, 4102 (1996)

    Article  ADS  Google Scholar 

  11. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Inc., New Jersey 1965)

    Google Scholar 

  12. H. Brenner, Chem. Eng. Sci. 18, 1 (1963)

    Article  Google Scholar 

  13. K. Ishimoto, M. Yamada, SIAM J. Appl. Math. 72, 1686 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. J.R. Blake, J. Fluid Mech. 46, 199 (1971)

    Article  MATH  ADS  Google Scholar 

  15. B. Felderhof, R. Jones, Phys. A 202, 94 (1994)

    Article  Google Scholar 

  16. B. Felderhof, R. Jones, Phys. A 202, 119 (1994)

    Article  Google Scholar 

  17. E. Lauga, Soft Matter 7, 3060 (2011)

    Article  ADS  Google Scholar 

  18. G.R. Fulford, D.F. Katz, R.L. Powell, Biorheol. 35, 295 (1998)

    Article  Google Scholar 

  19. D.J. Smith, J.R. Blake, E.A. Gaffney, Proc. R. Soc. A. 465, 2417 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. H.C. Berg, D.A. Brown, Nature 239, 500 (1972)

    Article  ADS  Google Scholar 

  21. D.F. James, Annu. Rev. Fluid Mech. 41, 129 (2009)

    Article  ADS  Google Scholar 

  22. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. Fluid Mechanics, 2nd edn. vol. 1 (Wiley-Interscience, New York, NY, 1987)

    Google Scholar 

  23. A.S. Khair, T.M. Squires, Phys. Rev. Lett. 105, 156001 (2010)

    Article  ADS  Google Scholar 

  24. O.S. Pak, L. Zhu, L. Brandt, E. Lauga, Phys. Fluids 24, 103102 (2012)

    Article  ADS  Google Scholar 

  25. N.C. Keim, M. Garcia, P.E. Arratia, Phys. Fluids 24, 081703 (2012)

    Article  ADS  Google Scholar 

  26. T. Normand, E. Lauga, Phys. Rev E 78, 061907 (2008)

    Article  ADS  Google Scholar 

  27. O.S. Pak, T. Normand, E. Lauga, Phys. Rev. E 81, 036312 (2010)

    Article  ADS  Google Scholar 

  28. G.I. Taylor, Proc. R. Soc. Lond. A 209, 447 (1951)

    Article  MATH  ADS  Google Scholar 

  29. T.K. Chaudhury, J. Fluid Mech. 95, 189 (1979).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. L.D. Sturges, J. Non-Newtonian Fluid Mech. 8, 357 (1981)

    Article  MATH  Google Scholar 

  31. E. Lauga, Phys. Fluids 19, 083104 (2007)

    Article  ADS  Google Scholar 

  32. H.C. Fu, T.R. Powers, C.W. Wolgemuth, Phys. Rev. Lett. 99, 258101 (2007)

    Article  ADS  Google Scholar 

  33. H.C. Fu, C.W. Wolgemuth, T.R. Powers, Phys. Fluids 21, 033102 (2009)

    Article  ADS  Google Scholar 

  34. G.J. Elfring, E. Lauga, Phys. Fluids 23, 011902 (2011)

    Article  ADS  Google Scholar 

  35. B. Liu, T.R. Powers, K.S. Breuer, Proc. Natl. Acad. Sci. USA 108, 19516 (2011)

    Article  ADS  Google Scholar 

  36. S.E. Spagnolie, B. Liu, T.R. Powers, Phys. Rev. Lett. 111, 068101 (2013)

    Article  ADS  Google Scholar 

  37. J. Teran, L. Fauci, M. Shelley, Phys. Rev. Lett. 104, 038101 (2010). DOI 10.1103/PhysRevLett.104.038101

    Article  ADS  Google Scholar 

  38. X.N. Shen, P.E. Arratia, Phys. Rev. Lett. 106, 208101 (2011)

    Article  ADS  Google Scholar 

  39. L. Zhu, M. Do-Quang, E. Lauga, L. Brandt, Phys. Rev. E 83, 011901 (2011)

    Article  ADS  Google Scholar 

  40. L. Zhu, E. Lauga, L. Brandt, Phys. Fluids 24, 051902 (2012)

    Article  ADS  Google Scholar 

  41. J.E. Drummond, J. Fluid Mech. 25, 787 (1966)

    Article  ADS  Google Scholar 

  42. M. Sauzade, G.J. Elfring, E. Lauga, Phys. D 240, 1567 (2011).

    Article  MATH  Google Scholar 

  43. C. Bender, S. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, Nweyork, 1978)

    MATH  Google Scholar 

  44. A. Morozov, Swimming of Taylor wavy sheets in viscoelastic fluids. Bull. Am. Phys. Soc. 59, (2014)

    Google Scholar 

  45. M. Dasgupta, B. Liu, H.C. Fu, M. Berhanu, K.S. Breuer, T.R. Powers, A. Kudrolli, Phys. Rev. E 87, 013015 (2013)

    Article  ADS  Google Scholar 

  46. J.R. Vélez-Cordero, E. Lauga, J. Non-Newton. Fluid Mech. 199, 37 (2013).

    Article  Google Scholar 

  47. T.D. Montenegro-Johnson, A.A. Smith, D.J. Smith, D. Loghin, J.R. Blake, Euro. Phys. J. E 35, 1 (2012)

    Article  Google Scholar 

  48. T.D. Montenegro-Johnson, D.J. Smith, D. Loghin, Phys. Fluids 25, 081903 (2013)

    Article  ADS  Google Scholar 

  49. B. Chan, N.J. Balmforth, A.E. Hosoi, Phys. Fluids 17, 113101 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  50. E. Lauga, A.E. Hosoi, Phys. Fluids 18, 113102 (2006).

    Article  ADS  Google Scholar 

  51. N.J. Balmforth, D. Coombs, S. Pachmann, Q.J. Mechanics Appl. Math. 63, 267 (2010)

    MATH  Google Scholar 

  52. I.H. RiedelKruse, A. Hilfinger, J. Howard, F. Jülicher, HFSP J. 1, 192 (2007)

    Article  Google Scholar 

  53. A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)

    Article  ADS  Google Scholar 

  54. M.P. Curtis, E.A. Gaffney, Phys. Rev. E 87, 043006 (2013)

    Article  ADS  Google Scholar 

  55. J.C. Chrispell, L.J. Fauci, M. Shelley, Phys. Fluids 25 (2013)

    Google Scholar 

  56. H.C. Berg, L. Turner, Nature 278, 349 (1979)

    Article  ADS  Google Scholar 

  57. H.C. Fu, V.B. Shenoy, T.R. Powers, Europhys. Lett. 91, 24002 (2010)

    Article  ADS  Google Scholar 

  58. H.C. Brinkman, Appl. Sci. Res. 1, 27 (1949)

    Article  MATH  Google Scholar 

  59. A.M. Leshansky, Phys. Rev. E 80, 051911 (2009)

    Article  ADS  Google Scholar 

  60. J. Du, J.P. Keener, R.D. Guy, A.L. Fogelson, Phys. Rev. E 85, 036304 (2012)

    Article  ADS  Google Scholar 

  61. C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004)

    Article  ADS  Google Scholar 

  62. M. Polin, I. Tuval, K. Drescher, J.P. Gollub, R.E. Goldstein, Science 325, 487 (2009)

    Article  ADS  Google Scholar 

  63. D.M. Woolley, R.F. Crockett, W.D.I. Groom, S.G. Revell, J. Exp. Biol. 212, 2215 (2009)

    Article  Google Scholar 

  64. G.J. Elfring, E. Lauga, Phys. Rev. Lett. 103, 088101 (2009)

    Article  ADS  Google Scholar 

  65. G.J. Elfring, E. Lauga, J. Fluid Mech. 674, 163–173 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. G.J. Elfring, O.S. Pak, E. Lauga, J. Fluid Mech. 646, 505 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  67. D. Saintillan, M.J. Shelley, Phys. Rev. Lett. 100, 178103 (2008)

    Article  ADS  Google Scholar 

  68. D. Saintillan, M.J. Shelley, Phys. Fluids 20 (2008)

    Google Scholar 

  69. C. Hohenegger, M.J. Shelley, Phys. Rev. E 81, 046311 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  70. D. Saintillan, M.J. Shelley, C. R. Physique 14, 497 (2013)

    Article  ADS  Google Scholar 

  71. Y. Bozorgi, P.T. Underhill, Phys. Rev. E 84, 061901 (2011)

    Article  ADS  Google Scholar 

  72. Y. Bozorgi, P.T. Underhill, J. Rheol. 57, 511 (2013)

    Article  ADS  Google Scholar 

  73. Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004)

    Article  ADS  Google Scholar 

  74. A. Einstein, Investigations on the Theory of the Brownian Movement (Courier Dover Publications, Newyork, 1956)

    MATH  Google Scholar 

  75. L.G. Leal, E.J. Hinch, J. Fluid Mech. 55, 745 (1972)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgment

GE gratefully acknowledges funding from the Natural Science and Engineering Research Council of Canada while EL thanks the European Union (through a CIG Grant) for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwynn J. Elfring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elfring, G.J., Lauga, E. (2015). Theory of Locomotion Through Complex Fluids. In: Spagnolie, S. (eds) Complex Fluids in Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2065-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2065-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2064-8

  • Online ISBN: 978-1-4939-2065-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics