Skip to main content

Abstract

Chapter 27 describes the history and development of techniques for measuring heat release rate (HRR). This chapter outlines features and details of today’s preferred instrument for measuring bench-scale HRR—the cone calorimeter. Other cone calorimeter measuring functions are

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO 5660, International Standard, “Reaction-To-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate,” International Organization for Standardization, Geneva (2002).

    Google Scholar 

  2. ASTM E1354, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, American Society for Testing and Materials, West Conshohocken, Pennsylvania (2011).

    Google Scholar 

  3. W.H. Twilley and V. Babrauskas, “User’s Guide for the Cone Calorimeter,” NBS Special Publication SP 745, U.S. National Bureau of Standards, Gaithersburg, MD (1988).

    Google Scholar 

  4. V. Babrauskas and S.J. Grayson, eds., Heat Release in Fires, Elsevier, London (1992). Distributed in the U.S. by NFPA.

    Google Scholar 

  5. Babrauskas, V., Bench-Scale Methods for Prediction of Full-Scale Fire Behavior of Furnishings and Wall Linings (SFPE Technical Report 84-10), Society of Fire Protection Engineers, Boston (1984).

    Google Scholar 

  6. Petrella, R. V., Assessment of Full-Scale Fire Hazards and Cone Calorimeter Data, J. Fire Sciences 12, 14–43 (1994).

    Article  Google Scholar 

  7. Cleary, T. G., and Quintiere, J. G., Framework for Utilizing Fire Property Tests, pp. 647–656 in Proc. 3 rd Intl. Symp. on Fire Safety Science, Intl. Assn. for Fire Safety Science. Elsevier Applied Science, New York (1991).

    Google Scholar 

  8. Babrauskas, V., Ignition Handbook, Fire Science Publishers/Society of Fire Protection Engineers, Issaquah WA (2003).

    Google Scholar 

  9. Capote, J. A., Alvear, D., Lazano, M., and Espina, P., Heat Release Rate and Computer Fire Modelling vs. Real-Scale Fire Tests in Passenger Trains, Fire & Materials 32, 213–229 (2008).

    Google Scholar 

  10. Aksit, I. M., Moss, J. B., and Rubini, P. A., CFD Simulation of Cable Tray Fires, pp. 1129–1140 in Interflam 2001—Proc. 9 th Intl. Conf., Interscience Communications Ltd., London (2001).

    Google Scholar 

  11. Andersson, J., and Persson, F., Datostöd simulering av pyrolysförlopp [Computer supported simulation of pyrolysis], Examensarbete, Dept. of Chemical Engineering, Chalmers Lindholmen University College, Göteborg, Sweden (2001).

    Google Scholar 

  12. Tsai, T.-H., Li, M.-J., Shih, I-Y., Jih, R., and Wong, S.-C., Experimental and Numerical Study of Autoignition and Pilot Ignition of PMMA Plates in a Cone Calorimeter, Combustion and Flame 124, 466–480 (2001).

    Article  Google Scholar 

  13. Wade, C., A Room Fire Model Incorporating Fire Growth on Combustible Linings (M.S. thesis), Dept. of Fire Protection Engineering, Worcester Polytechnic Institute, Worcester MA (1996).

    Google Scholar 

  14. Wade, C. A., LeBlanc, D., Ierardi, J., and Barnett, J. R., A Room-Corner Fire Growth and Zone Model for Lining Materials, pp. 106–117 in Proc. 2 nd Intl. Conf. on Fire Research and Engineering, Society of Fire Protection Engineers, Bethesda MD (1998).

    Google Scholar 

  15. Wade, C. A., A Theoretical Model for Fire Spread in a Room Corridor Configuration, pp. 295–306 in Proc. 3 rd Intl. Conf. on Performance-Based Codes and Fire Safety Design Methods, Society of Fire Protection Engineers, Bethesda MD (2000).

    Google Scholar 

  16. Lattimer, B. Y., Hunt, S. P., Wright, M., and Sorathia, U., Modeling Fire Growth in a Combustible Corner, Fire Safety J. 38, 771–796 (2003).

    Article  Google Scholar 

  17. Janssens, M. L., and Dillon, S. E., Balanced Approach to the Fire Performance Evaluation of Interior Finish Materials, pp. 43–50 in Fifteenth Meeting of the UJNR Panel on Fire Research and Safety, March 1–7, 2000 (NISTIR 6588), S. L. Bryner, ed., Nat. Inst. Stand. & Technol., Gaithersburg MD (2000).

    Google Scholar 

  18. Karlsson, B., Models for Calculating Flame Spread on Wall Lining Materials and the Resulting Heat Release Rate in a Room, Fire Safety J. 23, 365–386 (1994). Published in 1995.

    Google Scholar 

  19. Grant, G., and Drysdale, D., Numerical Modelling of Early Flame Spread in Warehouse Fires, Fire Safety J. 24, 247–278 (1995).

    Article  Google Scholar 

  20. Kokkala, M., Baroudi, D., and Parker, W. J., Upward Flame Spread on Wooden Surface Products: Experiments and Numerical Modelling, pp. 309–320 in Fire Safety Science—Proc. 5 th Intl. Symp.¸ Intl. Assn. for Fire Safety Science (1997).

    Google Scholar 

  21. Beyler, C. L., Hunt, S. P., Iqbal, N., and Williams, F. W., A Computer Model of Upward Flame Spread on Vertical Surfaces, pp. 297–308 in Fire Safety Science—Proc. 5 th Intl. Symp.¸ Intl. Assn. for Fire Safety Science (1997).

    Google Scholar 

  22. North, G. A., An Analytical Model for Vertical Flame Spread on Solids: An Initial Investigation (Fire Engineering Research Report 99/12), School of Engineering, University of Canterbury, New Zealand (1999).

    Google Scholar 

  23. Wright, M. T., Flame Spread on Composite Materials for Use in High Speed Craft (M.S. thesis), Worcester Polytechnic Institute, Worcester MA (1999).

    Google Scholar 

  24. Hostikka, S., and Axelsson, J., Modeling of the Radiative Feedback from the Flames in the Cone Calorimeter (TR 540), Nordtest, Espoo, Finland (2003).

    Google Scholar 

  25. Hakkarainen, T., and Hayashi, Y., Comparison of Japanese and European Fire Classification Systems for Surface Linings, Fire Science & Technology (Japan) 21:1, 19–42 (2001).

    Google Scholar 

  26. International Code for Application of Fire Test Procedures, 2010 (2010 FTP Code), International Maritime Organization, London (2011).

    Google Scholar 

  27. B.J. McCaffrey and G. Cox, “Entrainment and Heat Flux of Buoyant Diffusion Flames,” NBSIR 82-2473, U.S. National Bureau of Standards (1982).

    Google Scholar 

  28. J.R. Hallman, “Ignition Characteristics of Plastics and Rubber,” Ph.D. Dissertation, University of Oklahoma, Norman (1971).

    Google Scholar 

  29. B. Hägglund and L.-E. Persson, “The Heat Radiation from Petroleum Fires,” FOA Rapport C 20126-D6(A3), Försvarets Forskningsanstalt, Stockholm, Sweden (1976).

    Google Scholar 

  30. V. Babrauskas, “Estimating Large Pool Fire Burning Rates,” Fire Technology, 19, pp. 251–261 (Nov. 1983).

    Google Scholar 

  31. J.J. Comeford, “The Spectral Distribution of Radiant Energy of a Gas-Fired Radiant Panel and Some Diffusion Flames,” Combustion and Flame, 18, pp. 125–132 (1972).

    Article  Google Scholar 

  32. A. Tewarson, “Physico-Chemical and Combustion/Pyrolysis Properties of Polymeric Materials,” NBS-GCR-80-295, U.S. National Bureau of Standards, Gaithersburg, MD (1980).

    Google Scholar 

  33. ISO 5657, “Reaction to Fire Tests—Ignitability of Building Products Using a Radiant Heat Source,” International Organization for Standardization, Geneva (1997).

    Google Scholar 

  34. M.L. Janssens, “Fundamental Thermophysical Characteristics of Wood and Their Role in Enclosure Fire Growth,” Ph.D. Dissertation, University of Gent, Belgium (1991).

    Google Scholar 

  35. Boulet, P., et al., Characterization of the Radiative Exchanges When Using a Cone Calorimeter for the Study of Plywood Pyrolysis, Fire Safety J. 51 53–60 (2012).

    Article  Google Scholar 

  36. V. Babrauskas, “Development of the Cone Calorimeter—A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption,” Fire and Materials, 8, pp. 81–95 (1984).

    Article  Google Scholar 

  37. Babrauskas, V., and Wetterlund, I., The CBUF Cone Calorimeter Test Protocol: Results from International Round Robin Testing (SP Report 1996:12), Swedish National Testing and Research Institute, Borås (1996).

    Google Scholar 

  38. V. Babrauskas, W.H. Twilley, M. Janssens, and S. Yusa, “A Cone Calorimeter for Controlled-Atmospheres Studies,” Fire and Materials, 16, pp. 37–43 (1992).

    Article  Google Scholar 

  39. ASTM E906, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using a Thermopile Method, American Society for Testing and Materials, West Conshohocken, Pennsylvania (2010).

    Google Scholar 

  40. V. Babrauskas, “Combustion of Mattresses Exposed to Flaming Ignition Sources, Part II. Bench-Scale Tests and Recommended Standard Test,” NBSIR 80-2186, U.S. National Bureau of Standards (1981).

    Google Scholar 

  41. R.M. Nussbaum and B.A.-L. Östman, “Larger Specimens for Determining Rate of Heat Release in the Cone Calorimeter,” Fire and Materials, 10, pp. 151–160 (1986).

    Article  Google Scholar 

  42. V. Babrauskas, Letter to the editor, Fire and Materials, 11, p. 205 (1987).

    Article  Google Scholar 

  43. L. Orloff, J. deRis, and G.H. Markstein, “Upward Turbulent Fire Spread and Burning of Fuel Surfaces,” in Fifteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 183–192 (1974).

    Google Scholar 

  44. L. Orloff, A.T. Modak, and R.L. Alpert, “Burning of Large-Scale Vertical Wall Surfaces,” in Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1345–1354 (1976).

    Google Scholar 

  45. W.D. Weatherford, Jr. and D.M. Sheppard, “Basic Studies of the Mechanism of Ignition of Cellulosic Materials,” Tenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 897–910 (1965).

    Google Scholar 

  46. H.R. Wesson, J.R. Welker, and C.M. Sliepcevich, “The Piloted Ignition of Wood by Thermal Radiation,” Combustion and Flame, 16, pp. 303–310 (1971).

    Article  Google Scholar 

  47. J. Urbas and H. Sand, “Some Investigations on Ignition and Heat Release of Building Materials Using the Cone Calorimeter,” in Interflam’90, Fifth International Fire Conference Proceedings, Interscience Communications, Ltd., London, pp. 183–192 (1990).

    Google Scholar 

  48. V. Babrauskas and G. Mulholland, “Smoke and Soot Data Determinations in the Cone Calorimeter,” in ASTM STP 983, Mathematical Modeling of Fires, American Society for Testing and Materials, Philadelphia, pp. 83–104 (1987).

    Google Scholar 

  49. P.J. Geake, “Smoke Characterisation by Laser Diffraction,” Ph.D. Dissertation, Polytechnic of the South Bank, London (1988).

    Google Scholar 

  50. Hayakawa, T., Sakurai, Y., and Yoshida, K., Development of New Test Method of Cone Calorimeter for Liquid Substances, National Maritime Research Institute, Tokyo (2004).

    Google Scholar 

  51. Iwata, Y., Koseki, H., Janssens, M. L., and Takahashi, T., Comparison of Combustion Characteristics of Crude Oils, Fire and Materials 25, 1–7 (2001).

    Article  Google Scholar 

  52. Liu, J., Liao, G., Fan, W., and Yao, B., Study of Liquid Pool Fire Suppression with Water Mists by Cone Calorimeter, J. Fire Sciences 20, 465–477 (2002).

    Article  Google Scholar 

  53. Hshieh, F.-Y., and Julien, C. J., Experimental Study on the Radiative Ignition of Silicones, Fire and Materials 22, 179–185 (1998).

    Article  Google Scholar 

  54. Armand, Y., Delfau, J. L., and Vovelle, C., Kinetics of Thermal Degradation of Solid or Liquid Components under a Radiative Flux, pp. 205–221 in Industrial Fires II—Workshop Proceedings (Report EUR 15967 EN), European Commission, Luxembourg (1995).

    Google Scholar 

  55. Breulet, H., and Desmet, S., Characterization of Industrial Liquids by Means of the Cone Calorimeter, pp. 223–235 in Industrial Fires II—Workshop Proceedings (Report EUR 15967 EN), European Commission, Luxembourg (1995).

    Google Scholar 

  56. Grand, A. F., and Trevino, J. O., Flammability Screening and Fire Hazard of Industrial Fluids Using the Cone Calorimeter, pp. 157–173 in Fire Resistance of Industrial Fluids (ASTM STP 1284), ASTM, Philadelphia (1995).

    Google Scholar 

  57. Elam, S. K., Altenkirch, R. A., Saito, K., and Arai, M., Cone Heater Ignition Tests of Liquid Fuels, Fire Safety J. 16, 65–84 (1990).

    Article  Google Scholar 

  58. Standard Test Method for Using a Cone Calorimeter to Determine Fire-Test-Response Characteristics of Insulating Materials Contained in Electrical or Optical Fiber Cables (ASTM D 6113), ASTM Intl., West Conshohocken PA.

    Google Scholar 

  59. Grayson, S. J., et al., Fire Performance of Electric Cables—New Test Methods and Measurement Techniques (Contract no. SMT4-CT96-2059), final report to the European Commission. Interscience Communications Ltd., London (2000).

    Google Scholar 

  60. Gensous, F., and Grayson, S., Improved Procedure for Testing Intumescent Materials Using the Cone Calorimeter, pp. 977–981 in Interflam’96, Interscience Communications Ltd, London (1996).

    Google Scholar 

  61. Babrauskas, V., and Janssens, M., Quantitative Variables to Replace the Concept of ‘Noncombustibility,’ pp. 77–90 in Proc. Fire & Materials 2009, Interscience Communications Ltd, London (2009).

    Google Scholar 

  62. ASTM E 1474, Standard Test Method for Determining the Heat Release Rate of Upholstered Furniture and Mattress Components or Composites Using a Bench-Scale Oxygen Consumption Calorimeter, ASTM Intl., West Conshohocken PA (2010).

    Google Scholar 

  63. Richardson, L. R., Determining Degrees of Combustibility of Building Materials—National Building Code of Canada, Fire and Materials 18, 99–106 (1994).

    Article  Google Scholar 

  64. Richardson, L. R., and Brooks, M. E., Combustibility of Building Materials, Fire and Materials 15, 131–136 (1991).

    Article  Google Scholar 

  65. Standard Method of Test for Determination of Degrees of Combustibility of Building Materials using an Oxygen Consumption Calorimeter (Cone Calorimeter), National Standard of Canada, CAN/ULC-S135, Underwriters’ Laboratories of Canada, Scarborough, Ont., Canada.

    Google Scholar 

  66. V. Babrauskas, R.D. Peacock, M. Janssens, and N.E. Batho, “Standardizing the Exchange of Fire Data—The FDMS,” Fire and Materials, 15, pp. 85–92 (1991).

    Article  Google Scholar 

  67. V. Babrauskas, “Effective Measurement Techniques for Heat, Smoke, and Toxic Fire Gases,” in Fire: Control the Heat … Reduce the Hazard, QMC Fire & Materials Centre, London, pp. 4.1–4.10 (1988).

    Google Scholar 

  68. ISO 5725, “Accuracy (Trueness and Precision) of Measurement Methods and Results,” International Organization for Standardization, Geneva (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Nomenclature

b

Parameter

F

View factor (-)

h c

Convective heat transfer coefficient (W · m–2⋅K−1)

Thickness (mm)

\( {\dot{m}}^{{\prime\prime} } \)

Mass loss rate (g · s−1 · m−2)

\( \dot{q} \)

Total energy released per unit area (MJ · m−2)

q"

Total energy released per unit area (MJ m−2)

\( {\dot{q}}^{{\prime\prime} } \)

Heat flux (kW⋅m−2)

\( {\dot{q}}_{180}^{{\prime\prime} } \)

180 s average heat release rate (kW · m−2)

\( {\dot{q}}_{avg}^{{\prime\prime} } \)

Average heat release rate (kW m−2)

\( {\dot{q}}^{{\prime\prime} } \)

Irradiance (kW m−2)

\( {\dot{q}}_{\max}^{{\prime\prime} } \)

Maximum heat release rate (kW m−2)

\( {\dot{q}}_{\mathrm{tot}}^{{\prime\prime} } \)

Total heat released (MJ · m−2)

\( {\dot{q}}_{cr}^{{\prime\prime} } \)

Critical heat flux (kW m−2)

r

Repeatability (units dependent on quantity investigated)

R

Reproducibility (units dependent on quantity investigated)

t b

Duration of flaming (s)

t ig

Ignition time (s)

Δh c,eff

Effective heat of combustion (MJ · kg−1)

ε

Emissivity (-)

λ ρ C

Thermal inertia (kJ2 m−4 s−1 K−2)

ρ

Density (kg⋅m−3)

σ r

Repeatability standard deviation (units dependent on quantity investigated)

σ R

Reproducibility standard deviation (units dependent on quantity investigated)

σ f

Average specific extinction area (m2 · kg−1)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Babrauskas, V. (2016). The Cone Calorimeter. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics