Skip to main content

Development of Linear Canonical Transforms: A Historical Sketch

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

Abstract

Linear canonical transformations (LCTs) were introduced almost simultaneously during the early 1970s by Stuart A. Collins Jr. in paraxial optics, and independently by Marcos Moshinsky and Christiane Quesne in quantum mechanics, to understand the conservation of information and of uncertainty under linear maps of phase space. Only in the 1990s did both sources begin to be referred jointly in the growing literature, which has expanded into a field common to applied optics, mathematical physics, and analogic and digital signal analysis. In this introductory chapter we recapitulate the construction of the LCT integral transforms, detailing their Lie-algebraic relation with second-order differential operators, which is the origin of the metaplectic phase. Radial and hyperbolic LCTs are reviewed as unitary integral representations of the two-dimensional symplectic group, with complex extension to a semigroup for systems with loss or gain. Some of the more recent developments on discrete and finite analogues of LCTs are commented with their concomitant problems, whose solutions and alternatives are contained the body of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All lens centers are assumed to be on a common straight optical axis with their planes orthogonal to it; the “center” of cylindrical lenses is a line that should also intersect this axis. The consideration of displacement and (paraxial) tilt can be made using 2 + 2 more parameters for inhomogeneous LCTs, which are not explicitly considered here. See [18].

  2. 2.

    The paper by Collins uses momenta in the form n i p i with \(\vert \mathbf{p}_{i}\vert =\sin \theta _{i}\), and orders the 4-vector components as \((x_{1},p_{1},x_{2},p_{2})^{\top }\).

  3. 3.

    I thank Dr. George Nemeş for the remark that when dimensions are respected, \(\mathbf{F}\neq \boldsymbol{\Omega }\) because the parameters b and 1∕c have units of momentum/position, while a and d have no units. In our presentation of the kernel (1.17) we assume that momentum p bears no units (as in optics), and that a unit of distance has been agreed for position so that x is its numerical multiple.

  4. 4.

    Once I said in front of a large student audience that I had devoted much work to understand 2 × 2 matrices, the giggles in the hall were sobering.

  5. 5.

    For γ < 0 there is a doubling of the Hilbert space that requires some extra analytical finesse [57], which stems from a separation in hyperbolic coordinates such as that seen in the previous subsection.

  6. 6.

    The generators present a one-parameter family of self-adjoint extensions with non-equally spaced spectra [58] and also harbor the \(\mathcal{E}_{k}\) exceptional (or supplementary) representation series [59].

References

  1. S.A. Collins Jr., Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  2. M. Moshinsky, C. Quesne, Oscillator systems, in Proceedings of the 15th Solvay Conference in Physics (1970) (Gordon and Breach, New York, 1974)

    Google Scholar 

  3. M. Moshinsky, C. Quesne, Linear canonical transformations and their unitary representation. J. Math. Phys. 12, 1772–1780 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. C. Quesne, M. Moshinsky, Linear canonical transformations and matrix elements. J. Math. Phys. 12, 1780–1783 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. Liberman, K.B. Wolf, Independent simultaneous discoveries visualized through network analysis: the case of Linear Canonical Transforms. Scientometrics (2015). doi:10.1007/s/11192-015-1602-x online 20/06

    Google Scholar 

  6. K.B. Wolf, Integral Transforms in Science and Engineering (Plenum Publishing Corporation, New York, 1979)

    Book  MATH  Google Scholar 

  7. M. Nazarathy, J. Shamir, Fourier optics described by operator algebra. J. Opt. Soc. Am. 70, 150–159 (1980)

    Article  ADS  Google Scholar 

  8. M. Nazarathy, J. Shamir, Holography described by operator algebra. J. Opt. Soc. Am. 71, 529–541 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Nazarathy, J. Shamir, First-order optics—a canonical operator representation: lossless systems. J. Opt. Soc. Am. 72, 356–364 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Nazarathy, J. Shamir, First-order optics—operator representation for systems with loss or gain. J. Opt. Soc. Am. 72, 1398–1408 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Nazarathy, A. Hardy, J. Shamir, Generalized mode propagation in first-order optical systems with loss or gain. J. Opt. Soc. Am. 72, 1409–1420 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  12. A.J. Dragt, Lie algebraic theory of geometrical optics and optical aberrations. J. Opt. Soc. Am. 72, 372–379 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  13. A.J. Dragt, Lectures on Nonlinear Orbit Dynamics. American Institute of Physics Conference Proceedings, vol. 87 (American Institute of Physics, New York, 1982)

    Google Scholar 

  14. A.J. Dragt, Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics. Nucl. Instrum. Methods Phys. Res. A 258, 339–354 (1967)

    Article  ADS  Google Scholar 

  15. A.J. Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics, University of Maryland (2015). http://www.physics.umd.edu/dsat/dsatliemethods.html

  16. W. Brouwer, Matrix Methods in Optical Instrument Design (Benjamin, New York, 1964)

    Google Scholar 

  17. A. Gerrard, B. Burch, Introduction to Matrix Methods in Optics (Wiley, New York,1975)

    Google Scholar 

  18. M. Nazarathy, A. Hardy, J. Shamir, Misaligned first-order optics: canonical operator theory. J. Opt. Soc. Am. A 3, 1360–1369 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  19. A.J. Dragt, E. Forest, K.B. Wolf, Foundations of Lie algebraic theory of geometrical optics, in Lie Methods in Optics, ed. by J. Sánchez-Mondragón, K.B. Wolf. Lecture Notes in Physics, vol. 250 (Springer, Heidelberg, 1986)

    Google Scholar 

  20. M.N. Saad, K.B. Wolf, Factorization of the phase–space transformation produced by an arbitrary refracting surface. J. Opt. Soc. Am. A 3, 340–346 (1986)

    Article  ADS  Google Scholar 

  21. J. Sánchez-Mondragón, K.B. Wolf (eds.), Lie Methods in Optics. Lecture Notes in Physics, vol. 250 (Springer, Heidelberg, 1986)

    Google Scholar 

  22. K.B. Wolf (ed.), Lie Methods in Optics, II. Lecture Notes in Physics, vol. 352 (Springer, Heidelberg, 1989)

    Google Scholar 

  23. M.J. Bastiaans, Wigner distribution function applied to optical signals and systems. Opt. Commun. 25, 26–30 (1978)

    Article  ADS  Google Scholar 

  24. M.J. Bastiaans, Wigner distribution function and its applications to first-order optics. J. Opt. Soc. Am. 69, 1710–1716 (1979)

    Article  ADS  Google Scholar 

  25. G.W. Forbes, V.I. Man’ko, H.M. Ozaktas, R. Simon, K.B. Wolf (eds.), Feature issue on Wigner distributions and phase space in optics. J. Opt. Soc. Am. A 17(12), 2274–2274 (2000)

    Google Scholar 

  26. M.J. Bastiaans, Wigner distribution function and its application to first-order optics, in Selected Papers on Phase-Space Optics, ed. by M.E. Testorf, J. Ojeda-Castañeda, A.W. Lohmann (SPIE, Bellingham, 2006), pp. 315–321

    Google Scholar 

  27. T. Alieva, M.J. Bastiaans, Properties of the linear canonical integral transformation. J. Opt. Soc. Am. A 24, 3658–3665 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  28. T. Alieva, M.J. Bastiaans, Finite-mode analysis by means of intensity information in fractional optical systems. J. Opt. Soc. Am. A 19, 481–484 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  29. M.J. Bastiaans, K.B. Wolf, Phase reconstruction from intensity measurements in linear systems. J. Opt. Soc. Am. A 20, 1046–1049 (2003)

    Article  ADS  Google Scholar 

  30. T. Alieva, M.J. Bastiaans, M.L. Calvo, Fractional transforms in optical information processing. EURASIP J. Appl. Signal Process. 2005, 1498–1519 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Alieva, M.J. Bastiaans, Wigner distribution and fractional Fourier transform for two-dimensional symmetric optical beams. J. Opt. Soc. Am. A 17, 2319–2323 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Alieva, M.J. Bastiaans, Alternative representation of the linear canonical integral transform. Opt. Lett. 30, 3302–3304 (2005)

    Article  ADS  Google Scholar 

  33. M.J. Bastiaans, T. Alieva, Synthesis of an arbitrary ABCD-system with fixed lens positions. Opt. Lett. 16, 2414–2416 (2006)

    Article  ADS  Google Scholar 

  34. T. Alieva, M.J. Bastiaans, Orthonormal mode sets for the two-dimensional fractional Fourier transformation. Opt. Lett. 33, 1226–1228 (2007)

    Article  ADS  Google Scholar 

  35. T. Alieva, M.J. Bastiaans, Classification of lossless first-order optical systems and the linear canonical transformation. J. Opt. Soc. Am. A 24, 1053–1062 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  36. J.A. Rodrigo, T. Alieva, M.L. Calvo, Gyrator transform: properties and applications. Opt. Express 15, 2190–2203 (2007)

    Article  ADS  Google Scholar 

  37. J.A. Rodrigo, T. Alieva, M.J. Bastiaans, Phase space rotators and their applications in optics, in Optical and Digital Image Processing: Fundamentals and Applications, ed. by G. Cristóbal, P. Schelkens, H. Thienpont (Wiley-VCH, Weinheim, 2011), pp. 251–271

    Chapter  Google Scholar 

  38. R. Simon, Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726–2729 (2000)

    Article  ADS  Google Scholar 

  39. E.U. Condon, Immersion of the Fourier transform in a continuous group of functional transformations. Proc. Natl. Acad. Sci. 23, 158–163 (1937)

    Article  ADS  Google Scholar 

  40. V. Namias, The fractional order Fourier transform and its applications in quantum mechanics. IMA J. Appl. Math. 25, 241–265 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Mendlovic, H.M. Ozaktas, Fractional Fourier transforms and their optical implementation: I. J. Opt. Soc. Am. A 10, 1875–1881 (1993)

    Article  ADS  Google Scholar 

  42. H.M. Ozaktas, D. Mendlovic, Fractional Fourier transforms and their optical implementation: II. J. Opt. Soc. Am. A 10, 2522–2531 (1993)

    Article  ADS  Google Scholar 

  43. H.M. Ozaktas, D. Mendlovic, Fourier trasforms of fractional order and their optical interpretation. Opt. Commun. 101, 163–169 (1993)

    Article  ADS  Google Scholar 

  44. H.M. Ozaktas, D. Mendlovic, Fractional Fourier optica. J. Opt. Soc. Am. A 12, 743–751 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  45. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, Chichester, 2001)

    Google Scholar 

  46. M. Kauderer, Symplectic Matrices. First Order Systems and Special Relativity (World Scientific, Singapore, 1994)

    Google Scholar 

  47. V. Bargmann, Irreducible unitary representations of the Lorentz group. Ann. Math. 48, 568–642 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  48. K.B. Wolf, Geometric Optics on Phase Space (Springer, Heidelberg, 2004)

    MATH  Google Scholar 

  49. V. Bargmann, Group representation in Hilbert spaces of analytic functions, in Analytical Methods in Mathematical Physics, ed. by P. Gilbert, R.G. Newton (Gordon & Breach, New York, 1970), pp. 27–63

    Google Scholar 

  50. R. Simon, K.B. Wolf, Fractional Fourier transforms in two dimensions. J. Opt. Soc. Am. A 17, 2368–2381 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  51. K.B. Wolf, Canonical transforms, I. Complex linear transforms. J. Math. Phys. 15, 1295–1301 (1974)

    MATH  Google Scholar 

  52. B. Mielnik, J. Plebański, Combinatorial approach to Baker-Campbell-Hausdorff exponents. Ann. Inst. H. Poincaré A 12, 215–254 (1970)

    MATH  Google Scholar 

  53. I.M. Gel’fand, M.A. Naĭmark, Unitary representations of the Lorentz group. Izvestiya Akad. Nauk SSSR. Ser. Mat. 11, 411–504 (1947)

    MathSciNet  MATH  Google Scholar 

  54. M. Moshinsky, T.H. Seligman, K.B. Wolf, Canonical transformations and the radial oscillator and Coulomb problems. J. Math. Phys. 13, 901–907 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  55. K.B. Wolf, Canonical transforms. II. Complex radial transforms. J. Math. Phys. 15, 2101–2111 (1974)

    Google Scholar 

  56. K.B. Wolf, Canonical transforms. IV. Hyperbolic transforms: continuous series of SL(2,R) representations. J. Math. Phys. 21, 680–688 (1980)

    Google Scholar 

  57. D. Basu, K.B. Wolf, The unitary irreducible representations of SL(2,R) in all subgroup reductions. J. Math. Phys. 23, 189–205 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. K.B. Wolf, F. Aceves de la Cruz, Dependence of s-waves on continuous dimension: the quantum oscillator and free systems. Fortsch. Phys. 54, 1083–1108 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. D. Basu, T. Bhattacharya, The Gel’fand realization and the exceptional representations of SL(2,R). J. Math. Phys. 26, 12–17 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. N. Mukunda, B. Radhakrishnan, New forms for representations of 3-dimensional Lorentz group. J. Math. Phys. 14, 254–258 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. D. Basu, K.B. Wolf, The Clebsch–Gordan coefficients of the three-dimensional Lorentz algebra in the parabolic basis. J. Math. Phys. 24, 478–500 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. K.B. Wolf, A top-down account of linear canonical transforms. SIGMA 8, art. 033, 13 p. (2012)

    Google Scholar 

  63. P. Kramer, M. Moshinsky, T.H. Seligman, Complex extensions of canonical transformations and quantum mechanics, in Group Theory and Its Applications, vol. III, ed. by E.M. Loebl (Academic, New York, 1975), pp. 250–332

    Google Scholar 

  64. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Part I. Commun. Pure Appl. Math. 20, 187–214 (1961)

    Article  MathSciNet  Google Scholar 

  65. A.O. Barut, L. Girardello, New coherent states associated with noncompact groups. Commun. Math. Phys. 21, 1–41 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  66. J.J. Healy, J.T. Sheridan, Fast linear canonical transforms. J. Opt. Soc. Am. A 27, 21–30 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  67. J.-J. Ding, Research of fractional Fourier transform and linear canonical transform. Ph.D. Dissertation, National Taiwan University, 2001

    Google Scholar 

  68. J.J. Healy, K.B. Wolf, Discrete canonical transforms that are Hadamard matrices. J. Phys. A 44, art. 265302, 10 p. (2011)

    Google Scholar 

  69. L. Zhao, J.J. Healy, J.T. Sheridan, A unitary discrete linear canonical transform: analysis and application. Appl. Optics Appl. Optics ID 177405. 52, C30–C36 (2013)

    Google Scholar 

  70. A. Stern, Sampling of linear canonical transformed signals. Signal Process. 86, 1421–1425 (2006)

    Article  MATH  Google Scholar 

  71. F.S. Oktem, H.M. Ozaktas, Exact relation between continuous and discrete linear canonical transforms. IEEE Signal Process. Lett. 16, 727–730 (2009)

    Article  ADS  Google Scholar 

  72. A. Stern, Why is the linear canonical transform so little known? AIP Conf. Proc. 860, 225–234 (2006)

    Article  ADS  Google Scholar 

  73. S.-C. Pei, J.-J. Ding, Closed-form discrete fractional and affine transforms. IEEE Trans. Signal Process. 48, 1338–1353 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. K.B. Wolf, G. Krötzsch, Geometry and dynamics in the fractional discrete Fourier transform. J. Opt. Soc. Am. A 24, 651–658 (2007)

    Article  ADS  Google Scholar 

  75. S.-C. Pei, M.-H. Yeh, Improved discrete fractional transform. Opt. Lett. 22, 1047–1049 (1997)

    Article  ADS  Google Scholar 

  76. S.-C. Pei, M.-H. Yeh, C.-C. Tseng, Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. Signal Process. 47, 1335–1348 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. L. Barker, Ç. Çandan, T. Hakioğlu, M.A. Kutay, H.M. Ozaktas, The discrete harmonic oscillator, Harper’s equation, and the discrete fractional Fourier transform. J. Phys. A 33, 2209–2222 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. B.M. Hennely, J.T. Sheridan, Fast algorithm for the determination of linear canonical transform and fractional Fourier transform. SPIE Proc. 5456, 472–483 (2004)

    Article  ADS  Google Scholar 

  79. B.M. Hennely, J.T. Sheridan, Efficient algorithms for linear canonical transforms. SPIE Proc. 5557, 267–278 (2004)

    Article  ADS  Google Scholar 

  80. B.M. Hennely, J.T. Sheridan, A recursive fast algorithm for the linear canonical transforms. SPIE Proc. 5823, 1–12 (2004)

    Article  ADS  Google Scholar 

  81. J.J. Healy, J.T. Sheridan, Sampling and discretization of the linear canonical transform. Signal Process. 89, 641–648 (2009)

    Article  MATH  Google Scholar 

  82. H.M. Ozaktas, A. Koç, I. Sari, M.A. Kutay, Efficient computation of quadratic-phase integrals in optics. Opt. Lett. 31, 35–37 (2006)

    Article  ADS  Google Scholar 

  83. A. Koç, H.M. Ozaktas, Ç. Çandan, M.A. Kutay, Digital computation of linear canonical transforms. IEEE Trans. Signal Process. 56, 2383–2394 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  84. R.G. Campos, J. Figueroa, A fast algorithm for the linear canonical transform. Signal Process. 91, 1444–1447 (2011)

    Article  MATH  Google Scholar 

  85. N.M. Atakishiyev, G.S. Pogosyan, K.B. Wolf, Finite models of the oscillator. Phys. Part. Nucl. Suppl. 3 36, 521–555 (2005)

    Google Scholar 

  86. N.M. Atakishiyev, K.B. Wolf, Fractional Fourier-Kravchuk transform. J. Opt. Soc. Am. A 14, 1467–1477 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  87. K.B. Wolf, Linear transformations and aberrations in continuous and in finite systems. J. Phys. A 41, art. 304026, 19 p. (2008)

    Google Scholar 

  88. K.B. Wolf, Discrete systems and signals on phase space. Appl. Math. Inf. Sci. 4, 141–181 (2010)

    MathSciNet  MATH  Google Scholar 

  89. L.E. Vicent, K.B. Wolf, Analysis of digital images into energy-angular momentum modes. J. Opt. Soc. Am. A 28, 808–814 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I must thank the inspiring interaction I had with Professor Marcos Moshinsky for many years, the continuing interest of my colleagues, and especially that of the Editors of this volume. I have also incorporated some remarks graciously offered by Professor Stuart A. Collins Jr. Support for this research has been provided by the Óptica Matemática projects of UNAM (papiit in101115) and by the National Council for Science and Technology (sep-conacyt 79899).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Bernardo Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolf, K.B. (2016). Development of Linear Canonical Transforms: A Historical Sketch. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_1

Download citation

Publish with us

Policies and ethics