Skip to main content

Stem Cells for the Replacement of Auditory Neurons

  • Chapter
  • First Online:
The Primary Auditory Neurons of the Mammalian Cochlea

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 52))

Abstract

For inner ear neural replacement, stem cell therapy ultimately requires the meaningful reconnection of stem cell-derived auditory neurons to their peripheral and central targets, in order to faithfully reproduce a functional, tonotopic circuit. Learning how a stem cell is programmed for neural differentiation, how a neuron sends out a process to find a target, how it comes to recognize the appropriate site for synaptogenesis on a target cell, and how to express the molecular machinery needed for conducting an action potential and integrating with the functional circuit are all needed for rebuilding a damaged circuit. In instances where the peripheral targets (the sensory hair cells) have undergone severe degeneration these new neurons could be encouraged to grow processes toward a cochlear implant. This neural prosthesis could then directly stimulate stem cell-derived auditory neurons in the absence of the hair cells, to provide sound information to the brain. The need for accurate reproduction of a tonotopic neural circuit makes inner ear stem cell therapy particularly challenging. Despite these challenges, progress is being made toward the use of stem cells for auditory neural replacement, and progress to date is summarised in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backhouse, S., Coleman, B., & Shepherd, R. (2008). Surgical access to the mammalian cochlea for cell-based therapies. Experimental Neurology, 214(2), 193–200.

    Google Scholar 

  • Bas, E., Van De Water, T. R., Lumbreras, V., Rajguru, S., Goss, G., Hare, J. M., & Goldstein, B. J. (2013). Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion. Stem Cells and Development.

    Google Scholar 

  • Battisti, A. C., & Fekete, D. M. (2008). Slits and robos in the developing chicken inner ear. Developmental Dynamics, 237(2), 476–484.

    Google Scholar 

  • Bianchi, L. M., & Liu, H. (1999). Comparison of ephrin-A ligand and EphA receptor distribution in the developing inner ear. The Anatomical Record, 254(1), 127–134.

    Google Scholar 

  • Bianchi, L. M., & Gray, N. A. (2002). EphB receptors influence growth of ephrin-B1-positive statoacoustic nerve fibers. European Journal of Neuroscience, 16(8), 1499–1506.

    Google Scholar 

  • Boddy, S. L., Chen, W., Romero-Guevara, R., Kottam, L., Bellantuono, I., & Rivolta, M. N. (2012). Inner ear progenitor cells can be generated in vitro from human bone marrow mesenchymal stem cells. Regenerative Medicine, 7(6), 757–767.

    Google Scholar 

  • Brugeaud, A., Tong, M., Luo, L., & Edge, A. S. (2014). Inhibition of repulsive guidance molecule, RGMa, increases afferent synapse formation with auditory hair cells. Developmental Neurobiology, 74(4), 457–466.

    Google Scholar 

  • Chen, W., Cacciabue-Rivolta, D. I., Moore, H. D., & Rivolta, M. N. (2007). The human fetal cochlea can be a source for auditory progenitors/stem cells isolation. Hearing Research, 233(1–2), 23–29.

    Google Scholar 

  • Chen, W., Johnson, S. L., Marcotti, W., Andrews, P. W., Moore, H. D., & Rivolta, M. N. (2009). Human fetal auditory stem cells can be expanded in vitro and differentiate into functional auditory neurons and hair cell-like cells. Stem Cells, 27(5), 1196–1204.

    Google Scholar 

  • Chen, W., Jongkamonwiwat, N., Abbas, L., Eshtan, S. J., Johnson, S. L., Kuhn, S., Milo, M., Thurlow, J. K., Andrews, P. W., Marcotti, W., Moore, H. D., & Rivolta, M. N. (2012). Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature, 490(7419), 278–282.

    Google Scholar 

  • Chiu, L. L., Iyer, R. K., Reis, L. A., Nunes, S. S., & Radisic, M. (2012). Cardiac tissue engineering: Current state and perspectives. Frontiers in Bioscience, 17, 1533–1550.

    Google Scholar 

  • Cho, Y. B., Cho, H. H., Jang, S., Jeong, H. S., & Park, J. S. (2011). Transplantation of neural differentiated human mesenchymal stem cells into the cochlea of an auditory-neuropathy guinea pig model. Journal of Korean Medical Science, 26(4), 492–498.

    Google Scholar 

  • Coleman, B., Hardman, J., Coco, A., Epp, S., de Silva, M., Crook, J., & Shepherd, R. (2006). Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplantation, 15(5), 369–380.

    Google Scholar 

  • Coleman, B., Fallon, J. B., Pettingill, L. N., de Silva, M. G., & Shepherd, R. K. (2007a). Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons. Experimental Cell Research, 313(2), 232–243.

    Google Scholar 

  • Coleman, B., de Silva, M. G., & Shepherd, R. K. (2007b). Concise review: The potential of stem cells for auditory neuron generation and replacement. Stem Cells, 25(11), 2685–2694.

    Google Scholar 

  • Corrales, C. E., Pan, L., Li, H., Liberman, M. C., Heller, S., & Edge, A. S. (2006). Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: Growth of processes into the organ of corti. Journal of Neurobiology, 66(13), 1489–1500.

    Google Scholar 

  • Ernfors, P., Van De Water, T., Loring, J., & Jaenisch, R. (1995). Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron, 14(6), 1153–1164.

    Google Scholar 

  • Flores-Otero, J., Xue, H. Z., & Davis, R. L. (2007). Reciprocal regulation of presynaptic and postsynaptic proteins in bipolar spiral ganglion neurons by neurotrophins. The Journal of Neuroscience, 27(51), 14023–14034.

    Google Scholar 

  • Forrest, A. R. R. (2014). A promoter-level mammalian expression atlas. Nature, 507(7493), 462–470.

    Google Scholar 

  • Fritzsch, B., Silos-Santiago, I., Bianchi, L. M., & Farinas, I. (1997). The role of neurotrophic factors in regulating the development of inner ear innervation. Trends in Neuroscience, 20(4), 159–164.

    Google Scholar 

  • Fritzsch, B., Tessarollo, L., Coppola, E., & Reichardt, L. F. (2004). Neurotrophins in the ear: Their roles in sensory neuron survival and fiber guidance. Progress in Brain Research, 146, 265–278.

    Google Scholar 

  • Fu, X., & Xu, Y. (2012). Challenges to the clinical application of pluripotent stem cells: Towards genomic and functional stability. Genome Medicine, 4(6), 55.

    Google Scholar 

  • Fu, Y., Wang, S., Liu, Y., Wang, J., Wang, G., Chen, Q., & Gong, S. (2009). Study on neural stem cell transplantation into natural rat cochlea via round window. American Journal of Otolaryngology, 30(1), 8–16.

    Google Scholar 

  • Glavaski-Joksimovic, A., Thonabulsombat, C., Wendt, M., Eriksson, M., Ma, H., & Olivius, P. (2009). Morphological differentiation of tau-green fluorescent protein embryonic stem cells into neurons after co-culture with auditory brain stem slices. Neuroscience.

    Google Scholar 

  • Gunewardene, N., Dottori, M., & Nayagam, B. A. (2012). The convergence of cochlear implantation with induced pluripotent stem cell therapy. Stem Cell Reviews and Reports, 8(3), 741–754.

    Google Scholar 

  • Gunewardene, N., Dottori, M., Needham, K., & Nayagam, B. A. (2014). Directing human induced pluripotent stem cells into a neurosensory lineage for auditory neuron replacement. Bioresearch Open Access, 3(4), 162–175.

    Google Scholar 

  • Han, Z., Yang, J. M., Chi, F. L., Cong, N., Huang, Y. B., Gao, Z., & Li, W. (2010). Survival and fate of transplanted embryonic neural stem cells by Atoh1 gene transfer in guinea pigs cochlea. NeuroReport, 21(7), 490–496.

    Google Scholar 

  • Hansen, M. R., Zha, X. M., Bok, J., & Green, S. H. (2001). Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons in vitro. The Journal of Neuroscience, 21(7), 2256–2267.

    Google Scholar 

  • Harel, N. Y., & Strittmatter, S. M. (2006). Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nature Reviews Neuroscience, 7(8), 603–616.

    Google Scholar 

  • Hata, K., Fujitani, M., Yasuda, Y., Doya, H., Saito, T., Yamagishi, S., Mueller, B. K., & Yamashita, T. (2006). RGMa inhibition promotes axonal growth and recovery after spinal cord injury. Journal of Cell Biology, 173(1), 47–58.

    Google Scholar 

  • Hegarty, J. L., Kay, A. R., & Green, S. H. (1997). Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+]i within a set range. The Journal of Neuroscience, 17(6), 1959–1970.

    Google Scholar 

  • Hildebrand, M. S., Dahl, H. H., Hardman, J., Coleman, B., Shepherd, R. K., & de Silva, M. G. (2005). Survival of partially differentiated mouse embryonic stem cells in the scala media of the guinea pig cochlea. Journal of the Association for Research in Otolaryngology, 6, 341–354.

    Google Scholar 

  • Hyakumura, T., Dottori, M., Needham, K., & Nayagam, B. A. (2012). Innervation of peripheral and central auditory tissues by human embryonic stem cell-derived neurons in vitro (T-2294). Paper presented at the International Society for Stem Cell Research 10th Annual Meeting, Yokohama, Japan.

    Google Scholar 

  • Iguchi, F., Nakagawa, T., Tateya, I., Endo, T., Kim, T. S., Dong, Y., Kita, T., Kojima, K., Naito, Y., Omori, K., & Ito, J. (2004). Surgical techniques for cell transplantation into the mouse cochlea. Acta Oto-Laryngologica Supplementum (551), 43–47.

    Google Scholar 

  • Javel, E., & Viemeister, N. F. (2000). Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination. Journal of the Acoustical Society of America, 107(2), 908–921.

    Google Scholar 

  • Kasagi, H., Kuhara, T., Okada, H., Sueyoshi, N., & Kurihara, H. (2013). Mesenchymal stem cell transplantation to the mouse cochlea as a treatment for childhood sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology, 77(6), 936–942.

    Google Scholar 

  • Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., Nishikawa, S. I., & Sasai, Y. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 28(1), 31–40.

    Google Scholar 

  • Kawasaki, H., Suemori, H., Mizuseki, K., Watanabe, K., Urano, F., Ichinose, H., Haruta, M., Takahashi, M., Yoshikawa, K., Nishikawa, S., Nakatsuji, N., & Sasai, Y. (2002). Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proceedings of the National Academy of Sciences of the U S A, 99(3), 1580–1585.

    Google Scholar 

  • Kiang, N. Y., Watanabe, T., Thomas, E. C., & Clark, L. F. (1965). Discharge patterns of single fibers in the cat’s auditory nerve. Cambridge, MA.: MIT Press.

    Google Scholar 

  • Kondo, T., Matsuoka, A. J., Shimomura, A., Koehler, K. R., Chan, R. J., Miller, J. M., Srour, E. F., & Hashino, E. (2011). Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx3. Stem Cells, 29(5), 836–846.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. The Journal of Neuroscience, 26(7), 2115–2123.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29(45), 14077–14085.

    Google Scholar 

  • Kyoto, A., Hata, K., & Yamashita, T. (2007). Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury. Brain Research, 1186, 74–86.

    Google Scholar 

  • Lang, H., Schulte, B. A., Goddard, J. C., Hedrick, M., Schulte, J. B., Wei, L., & Schmiedt, R. A. (2008). Transplantation of mouse embryonic stem cells into the cochlea of an auditory-neuropathy animal model: Effects of timing after injury. Journal of the Association for Research in Otolaryngology, 9(2), 225–240.

    Google Scholar 

  • Lee, K. H., & Warchol, M. E. (2008). Promotion of neurite outgrowth and axon guidance in spiral ganglion cells by netrin-1. Archives of OtolaryngologyHead & Neck Surgery, 134(2), 146–151.

    Google Scholar 

  • Lerner-Natoli, M., Ladrech, S., Renard, N., Puel, J. L., Eybalin, M., & Pujol, R. (1997). Protein kinase C may be involved in synaptic repair of auditory neuron dendrites after AMPA injury in the cochlea. Brain Research, 749(1), 109–119.

    Google Scholar 

  • Liberman, M. C., & Mulroy, M. J. (1982). Acute and chronic effects of acoustic trauma: Cochlear pathology and auditory nerve pathophysiology. In R. P. Hamernik, D. Henderson, & R. Salvi (Eds.), New perspectives on noise-induced hearing loss (pp. 105–151). New York: Raven Press.

    Google Scholar 

  • Lin, H. W., Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2011). Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. Journal of the Association for Research in Otolaryngology, 12(5), 605–616.

    Google Scholar 

  • Lippe, W. R. (1994). Rhythmic spontaneous activity in the developing avian auditory system. The Journal of Neuroscience, 14(3 Pt 2), 1486–1495.

    Google Scholar 

  • Ma, J., Guo, L., Fiene, S. J., Anson, B. D., Thomson, J. A., Kamp, T. J., Kolaja, K. L., Swanson, B. J., & January, C. T. (2011). High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. American Journal of Physiology–Heart and Circulatory Physiology, 301(5), H2006–2017.

    Google Scholar 

  • Makary, C. A., Shin, J., Kujawa, S. G., Liberman, M. C., & Merchant, S. N. (2011). Age-related primary cochlear neuronal degeneration in human temporal bones. Journal of the Association for Research in Otolaryngology, 12(6), 711–717.

    Google Scholar 

  • Marrs, G. S., & Spirou, G. A. (2012). Embryonic assembly of auditory circuits: Spiral ganglion and brainstem. Journal of Physiology, 590(Pt 10), 2391–2408.

    Google Scholar 

  • Martinez-Monedero, R., Corrales, C. E., Cuajungco, M. P., Heller, S., & Edge, A. S. (2006). Reinnervation of hair cells by auditory neurons after selective removal of spiral ganglion neurons. Journal of Neurobiology, 66(4), 319–331.

    Google Scholar 

  • Martinez-Monedero, R., Yi, E., Oshima, K., Glowatzki, E., & Edge, A. S. (2008). Differentiation of inner ear stem cells to functional sensory neurons. Developmental Neurobiology, 68(5), 669–684.

    Google Scholar 

  • Matsumoto, M., Nakagawa, T., Higashi, T., Kim, T. S., Kojima, K., Kita, T., Sakamoto, T., & Ito, J. (2005). Innervation of stem cell-derived neurons into auditory epithelia of mice. NeuroReport, 16(8), 787–790.

    Google Scholar 

  • Matsumoto, M., Nakagawa, T., Kojima, K., Sakamoto, T., Fujiyama, F., & Ito, J. (2008). Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. Journal of Neuroscience Research, 86(14), 3075–3085.

    Google Scholar 

  • Matsuoka, A. J., Kondo, T., Miyamoto, R. T., & Hashino, E. (2006). In vivo and in vitro characterization of bone marrow-derived stem cells in the cochlea. Laryngoscope, 116(8), 1363–1367.

    Google Scholar 

  • Merabet, L. B. (2011). Building the bionic eye: An emerging reality and opportunity. Progress in Brain Research, 192, 3–15.

    Google Scholar 

  • Naito, Y., Nakamura, T., Nakagawa, T., Iguchi, F., Endo, T., Fujino, K., Kim, T. S., Hiratsuka, Y., Tamura, T., Kanemaru, S., Shimizu, Y., & Ito, J. (2004). Transplantation of bone marrow stromal cells into the cochlea of chinchillas. NeuroReport, 15(1), 1–4.

    Google Scholar 

  • Nayagam, B. A., Backhouse, S. S., Cimenkaya, C., & Shepherd, R. K. (2012). Hydrogel limits stem cell dispersal in the deaf cochlea: Implications for cochlear implants. Journal of Neural Engineering, 9(6), doi: 10.1088/1741–2560/9/6/065001

    Google Scholar 

  • Nayagam, B. A., Edge, A. S., Needham, K., Hyakumura, T., Leung, J., Nayagam, D. A., & Dottori, M. (2013). An in vitro model of developmental synaptogenesis using cocultures of human neural progenitors and cochlear explants. Stem Cells and Development, 22(6), 901–912.

    Google Scholar 

  • Needham, K., Minter, R. L., Shepherd, R. K., & Nayagam, B. A. (2013). Challenges for stem cells to functionally repair the damaged auditory nerve. Expert Opinion on Biological Therapy, 13(1), 85–101.

    Google Scholar 

  • Needham, K., Hyakumura, T., Gunewardene, N., Dottori, M., & Nayagam, B. A. (2014). Electrophysiological properties of neurosensory progenitors derived from human embryonic stem cells. Stem Cell Research, 12(1), 241–249.

    Google Scholar 

  • Neuhuber, B., Timothy Himes, B., Shumsky, J. S., Gallo, G., & Fischer, I. (2005). Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Research, 1035(1), 73–85.

    Google Scholar 

  • Nishimura, K., Nakagawa, T., Ono, K., Ogita, H., Sakamoto, T., Yamamoto, N., Okita, K., Yamanaka, S., & Ito, J. (2009). Transplantation of mouse induced pluripotent stem cells into the cochlea. NeuroReport, 20(14), 1250–1254.

    Google Scholar 

  • Nishimura, K., Nakagawa, T., Sakamoto, T., & Ito, J. (2012). Fates of murine pluripotent stem cell-derived neural progenitors following transplantation into mouse cochleae. Cell Transplantation, 21(4), 763–771.

    Google Scholar 

  • Ogita, H., Nakagawa, T., Sakamoto, T., Inaoka, T., & Ito, J. (2010). Transplantation of bone marrow-derived neurospheres into guinea pig cochlea. Laryngoscope, 120(3), 576–581.

    Google Scholar 

  • Ohtaki, H., Ylostalo, J. H., Foraker, J. E., Robinson, A. P., Reger, R. L., Shioda, S., & Prockop, D. J. (2008). Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proceedings of the National Academy of Sciences of the U S A, 105(38), 14638–14643.

    Google Scholar 

  • Pandit, S. R., Sullivan, J. M., Egger, V., Borecki, A. A., & Oleskevich, S. (2011). Functional effects of adult human olfactory stem cells on early-onset sensorineural hearing loss. Stem Cells, 29(4), 670–677.

    Google Scholar 

  • Parker, M. A., Corliss, D. A., Gray, B., Anderson, J. K., Bobbin, R. P., Snyder, E. Y., & Cotanche, D. A. (2007). Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hearing Research, 232(1–2), 29–43.

    Google Scholar 

  • Pasterkamp, R. J., & Verhaagen, J. (2006). Semaphorins in axon regeneration: Developmental guidance molecules gone wrong? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361(1473), 1499–1511.

    Google Scholar 

  • Pasterkamp, R. J., De Winter, F., Holtmaat, A. J., & Verhaagen, J. (1998). Evidence for a role of the chemorepellent semaphorin III and its receptor neuropilin-1 in the regeneration of primary olfactory axons. The Journal of Neuroscience, 18(23), 9962–9976.

    Google Scholar 

  • Pickles, J. O., Claxton, C., & Van Heumen, W. R. (2002). Complementary and layered expression of Ephs and ephrins in developing mouse inner ear. Journal of Comparative Neurology, 449(3), 207–216.

    Google Scholar 

  • Pirvola, U., Ylikoski, J., Palgi, J., Lehtonen, E., Arumae, U., & Saarma, M. (1992). Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proceedings of the National Academy of Sciences of the U S A, 89(20), 9915–9919.

    Google Scholar 

  • Purcell, E. K., Yang, A., Liu, L., Velkey, J. M., Morales, M. M., & Duncan, R. K. (2013). BDNF profoundly and specifically increases KCNQ4 expression in neurons derived from embryonic stem cells. Stem Cell Research, 10(1), 29–35.

    Google Scholar 

  • Rajala, K., Pekkanen-Mattila, M., & Aalto-Setala, K. (2011). Cardiac differentiation of pluripotent stem cells. Stem Cells International, 2011, 383709.

    Google Scholar 

  • Regala, C., Duan, M., Zou, J., Salminen, M., & Olivius, P. (2005). Xenografted fetal dorsal root ganglion, embryonic stem cell and adult neural stem cell survival following implantation into the adult vestibulocochlear nerve. Experimental Neurology, 193(2), 326–333.

    Google Scholar 

  • Revoltella, R. P., Papini, S., Rosellini, A., Michelini, M., Franceschini, V., Ciorba, A., Bertolaso, L., Magosso, S., Hatzopoulos, S., Lorito, G., Giordano, P., Simoni, E., Ognio, E., Cilli, M., Saccardi, R., Urbani, S., Jeffery, R., Poulsom, R., & Martini, A. (2008). Cochlear repair by transplantation of human cord blood CD133+ cells to nod-scid mice made deaf with kanamycin and noise. Cell Transplantation, 17(6), 665–678.

    Google Scholar 

  • Reyes, J. H., O’Shea, K. S., Wys, N. L., Velkey, J. M., Prieskorn, D. M., Wesolowski, K., Miller, J. M., & Altschuler, R. A. (2008). Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: In vitro and in vivo studies. The Journal of Neuroscience, 28(48), 12622–12631.

    Google Scholar 

  • Robertson, D. (1983). Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hearing Research, 9(3), 263–278.

    Google Scholar 

  • Rubel, E. W., & Fritzsch, B. (2002). Auditory system development: Primary auditory neurons and their targets. Annual Reviews of Neuroscience, 25, 51–101.

    Google Scholar 

  • Ruel, J., Emery, S., Nouvian, R., Bersot, T., Amilhon, B., Van Rybroek, J. M., Rebillard, G., Lenoir, M., Eybalin, M., Delprat, B., Sivakumaran, T. A., Giros, B., El Mestikawy, S., Moser, T., Smith, R. J., Lesperance, M. M., & Puel, J. L. (2008). Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. American Journal of Human Genetics, 83(2), 278–292.

    Google Scholar 

  • Ryugo, D. K., Kretzmer, E. A., & Niparko, J. K. (2005). Restoration of auditory nerve synapses in cats by cochlear implants. Science, 310(5753), 1490–1492.

    Google Scholar 

  • Sabo, S. L., Gomes, R. A., & McAllister, A. K. (2006). Formation of presynaptic terminals at predefined sites along axons. The Journal of Neuroscience, 26(42), 10813–10825.

    Google Scholar 

  • Seal, R. P., Akil, O., Yi, E., Weber, C. M., Grant, L., Yoo, J., Clause, A., Kandler, K., Noebels, J. L., Glowatzki, E., Lustig, L. R., & Edwards, R. H. (2008). Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron, 57(2), 263–275.

    Google Scholar 

  • Sekiya, T., Holley, M. C., Kojima, K., Matsumoto, M., Helyer, R., & Ito, J. (2007). Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve. European Journal of Neuroscience, 25(8), 2307–2318.

    Google Scholar 

  • Sergeyenko, Y., Lall, K., Liberman, M. C., & Kujawa, S. G. (2013). Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. The Journal of Neuroscience, 33(34), 13686–13694.

    Google Scholar 

  • Shannon, R. V. (1983). Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hearing Research, 12(1), 1–16.

    Google Scholar 

  • Shepherd, R. K., & Javel, E. (1997). Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hearing Research, 108(1–2), 112–144.

    Google Scholar 

  • Shepherd, R. K., Coco, A., Epp, S. B., & Crook, J. M. (2005). Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. Journal of Comparative Neurology, 486(2), 145–158.

    Google Scholar 

  • Shi, F., & Edge, A. S. (2013). Prospects for replacement of auditory neurons by stem cells. Hearing Research, 297, 106–112.

    Google Scholar 

  • Shi, F., Corrales, C. E., Liberman, M. C., & Edge, A. S. (2007). BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. European Journal of Neuroscience, 26(11), 3016–3023.

    Google Scholar 

  • Singh, M. S., & MacLaren, R. E. (2011). Stem cells as a therapeutic tool for the blind: Biology and future prospects. Proceedings of the Royal Society of London B: Biological Sciences, 278(1721), 3009–3016.

    Google Scholar 

  • Spoendlin, H. (1971). Primary structural changes in the organ of Corti after acoustic overstimulation. Acta Oto-Laryngologica, 71(2), 166–176.

    Google Scholar 

  • Starr, A., Isaacson, B., Michalewski, H. J., Zeng, F. G., Kong, Y. Y., Beale, P., Paulson, G. W., Keats, B. J., & Lesperance, M. M. (2004). A dominantly inherited progressive deafness affecting distal auditory nerve and hair cells. Journal of the Association for Research in Otolaryngology, 5(4), 411–426.

    Google Scholar 

  • Sullivan, J. M., Cohen, M. A., Pandit, S. R., Sahota, R. S., Borecki, A. A., & Oleskevich, S. (2011). Effect of epithelial stem cell transplantation on noise-induced hearing loss in adult mice. Neurobiology of Disease, 41(2), 552–559.

    Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Google Scholar 

  • Tang, X. Q., Heron, P., Mashburn, C., & Smith, G. M. (2007). Targeting sensory axon regeneration in adult spinal cord. The Journal of Neuroscience, 27(22), 6068–6078.

    Google Scholar 

  • Tannemaat, M. R., Korecka, J., Ehlert, E. M., Mason, M. R., van Duinen, S. G., Boer, G. J., Malessy, M. J., & Verhaagen, J. (2007). Human neuroma contains increased levels of semaphorin 3A, which surrounds nerve fibers and reduces neurite extension in vitro. The Journal of Neuroscience, 27(52), 14260–14264.

    Google Scholar 

  • Tashiro, A., Dunaevsky, A., Blazeski, R., Mason, C. A., & Yuste, R. (2003). Bidirectional regulation of hippocampal mossy fiber filopodial motility by kainate receptors: A two-step model of synaptogenesis. Neuron, 38(5), 773–784.

    Google Scholar 

  • Tong, M., Brugeaud, A., & Edge, A. S. (2013). Regenerated synapses between postnatal hair cells and auditory neurons. Journal of the Association for Research in Otolaryngology, 14(3), 321–329.

    Google Scholar 

  • Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E., & Bergles, D. E. (2007). The origin of spontaneous activity in the developing auditory system. Nature, 450(7166), 50–55.

    Google Scholar 

  • Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–736.

    Google Scholar 

  • Vandali, A., Sly, D., Cowan, R., & van Hoesel, R. (2013). Pitch and loudness matching of unmodulated and modulated stimuli in cochlear implantees. Hearing Research, 302, 32–49.

    Google Scholar 

  • Wang, Q., & Green, S. H. (2011). Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro. The Journal of Neuroscience, 31(21), 7938–7949.

    Google Scholar 

  • Wong, W. T., & Wong, R. O. (2001). Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nature Neuroscience, 4(4), 351–352.

    Google Scholar 

  • Yamada, M., Tanemura, K., Okada, S., Iwanami, A., Nakamura, M., Mizuno, H., Ozawa, M., Ohyama-Goto, R., Kitamura, N., Kawano, M., Tan-Takeuchi, K., Ohtsuka, C., Miyawaki, A., Takashima, A., Ogawa, M., Toyama, Y., Okano, H., & Kondo, T. (2007). Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells, 25(3), 562–570.

    Google Scholar 

  • Yu, K., Ge, J., Summers, J. B., Li, F., Liu, X., Ma, P., Kaminski, J., & Zhuang, J. (2008). TSP-1 secreted by bone marrow stromal cells contributes to retinal ganglion cell neurite outgrowth and survival. PLoS One, 3(6), e2470.

    Google Scholar 

  • Yuan, Y., Mizutari, K., Cheng, Y., Lang, H., Liberman, C., Shi, F., & Edge, A. (2012). Reinnervation of hair cells and cochlear nucleus by engrafted neurons derived from stem cells. In ARO 35th Annual Meeting, Abstract #355.

    Google Scholar 

  • Zeng, F. G. (2002). Temporal pitch in electric hearing. Hearing Research, 174(1–2), 101–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert S. B. Edge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nayagam, B.A., Edge, A.S.B. (2016). Stem Cells for the Replacement of Auditory Neurons. In: Dabdoub, A., Fritzsch, B., Popper, A., Fay, R. (eds) The Primary Auditory Neurons of the Mammalian Cochlea. Springer Handbook of Auditory Research, vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3031-9_9

Download citation

Publish with us

Policies and ethics