Skip to main content

Generation of Xenomitochondrial Embryonic Stem Cells for the Production of Live Xenomitochondrial Mice

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1351))

Abstract

The unique features of the mitochondrial genome, such as its high copy number and lack of defined mechanisms of recombination, have hampered efforts to manipulate its sequence to create specific mutations in mouse mtDNA. As such, the generation of in vivo mouse models of mtDNA disease has proved technically challenging. This chapter describes a unique approach to create mitochondrial oxidative phosphorylation (OXPHOS) defects in mouse ES cells by transferring mtDNA from different murid species into Mus musculus domesticus ES cells using cytoplasmic hybrid (“cybrid”) fusion. The resulting “xenocybrid” ES cells carry OXPHOS defects of varying severity, and can be utilized to generate live mouse models of mtDNA disease.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14:146–151

    Article  CAS  PubMed  Google Scholar 

  2. Meirelles FV, Smith LC (1998) Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos. Genetics 148:877–883

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 16:93–95

    Article  CAS  PubMed  Google Scholar 

  4. Meirelles FV, Smith LC (1997) Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics 145:445–451

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Laipis PJ (1996) Construction of heteroplasmic mice containing two mitochondrial DNA genotypes by micromanipulation of single-cell embryos. Methods Enzymol 264:345–357

    Article  CAS  PubMed  Google Scholar 

  6. Pinkert CA, Irwin MH, Johnson LW, Moffatt RJ (1997) Mitochondria transfer into mouse ova by microinjection. Transgenic Res 6:379–383

    Article  CAS  PubMed  Google Scholar 

  7. Irwin MH, Johnson LW, Pinkert CA (1999) Isolation and microinjection of somatic cell-derived mitochondria and germline heteroplasmy in transmitochondrial mice. Transgenic Res 8:119–123

    Article  CAS  PubMed  Google Scholar 

  8. Inoue K, Nakada K, Ogura A, Isobe K, Yi G, Nonaka I, Hayashi JI (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26:176–181

    Article  CAS  PubMed  Google Scholar 

  9. Blanc H, Adams CW, Wallace DC (1981) Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines. Nucleic Acids Res 9:5785–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marchington DR, Barlow D, Poulton J (1999) Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: developing the first mouse model of mitochondrial DNA disease. Nat Med 5:957–960

    Article  CAS  PubMed  Google Scholar 

  11. Levy SE, Waymire KG, Kim YL, MacGregor GR, Wallace DC (1999) Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse. Transgenic Res 8:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sligh JE, Levy SE, Waymire KG, Allard P, Dillehay DL, Nusinowitz S, Heckenlively JR, MacGregor GR, Wallace DC (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A 97:14461–14466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shimizu A, Mito T, Hayashi C, Ogasawara E, Koba R, Negishi I, Takenaga K, Nakada K, Hayashi J (2014) Transmitochondrial mice as models for primary prevention of diseases caused by mutation in the tRNA(Lys) gene. Proc Natl Acad Sci U S A 111:3104–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hashizume O, Shimizu A, Yokota M, Sugiyama A, Nakada K, Miyoshi H, Itami M, Ohira M, Nagase H, Takenaga K, Hayashi J (2012) Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci U S A 109:10528–10533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yokota M, Shitara H, Hashizume O, Ishikawa K, Nakada K, Ishii R, Taya C, Takenaga K, Yonekawa H, Hayashi J (2010) Generation of trans-mitochondrial mito-mice by the introduction of a pathogenic G13997A mtDNA from highly metastatic lung carcinoma cells. FEBS Lett 584:3943–3948

    Article  CAS  PubMed  Google Scholar 

  16. Lin CS, Sharpley MS, Fan W, Waymire KG, Sadun AA, Carelli V, Ross-Cisneros FN, Baciu P, Sung E, McManus MJ, Pan BX, Gil DW, Macgregor GR, Wallace DC (2012) Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc Natl Acad Sci U S A 109:20065–20070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kasahara A, Ishikawa K, Yamaoka M, Ito M, Watanabe N, Akimoto M, Sato A, Nakada K, Endo H, Suda Y, Aizawa S, Hayashi J (2006) Generation of trans-mitochondrial mice carrying homoplasmic mtDNAs with a missense mutation in a structural gene using ES cells. Hum Mol Genet 15:871–881

    Article  CAS  PubMed  Google Scholar 

  18. Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, Vannan MA, Narula J, Macgregor GR, Wallace DC (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Acin-Perez R, Bayona-Bafaluy MP, Bueno M, Machicado C, Fernandez-Silva P, Perez-Martos A, Montoya J, Lopez-Perez MJ, Sancho J, Enriquez JA (2003) An intragenic suppressor in the cytochrome c oxidase I gene of mouse mitochondrial DNA. Hum Mol Genet 12:329–339

    Article  CAS  PubMed  Google Scholar 

  20. Weiss H, Wester-Rosenloef L, Koch C, Koch F, Baltrusch S, Tiedge M, Ibrahim S (2012) The mitochondrial Atp8 mutation induces mitochondrial ROS generation, secretory dysfunction, and beta-cell mass adaptation in conplastic B6-mtFVB mice. Endocrinology 153:4666–4676

    Article  CAS  PubMed  Google Scholar 

  21. McKenzie M, Chiotis M, Pinkert CA, Trounce IA (2003) Functional respiratory chain analyses in murid xenomitochondrial cybrids expose coevolutionary constraints of cytochrome b and nuclear subunits of complex III. Mol Biol Evol 20:1117–1124

    Article  CAS  PubMed  Google Scholar 

  22. McKenzie M, Trounce I (2000) Expression of Rattus norvegicus mtDNA in Mus musculus cells results in multiple respiratory chain defects. J Biol Chem 275:31514–31519

    Article  CAS  PubMed  Google Scholar 

  23. Kelly RD, Rodda AE, Dickinson A, Mahmud A, Nefzger CM, Lee W, Forsythe JS, Polo JM, Trounce IA, McKenzie M, Nisbet DR, St John JC (2013) Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cells 31:703–716

    Article  CAS  PubMed  Google Scholar 

  24. McKenzie M, Trounce IA, Cassar CA, Pinkert CA (2004) Production of homoplasmic xenomitochondrial mice. Proc Natl Acad Sci U S A 101:1685–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McKenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Trounce, I.A., Ackerley, J., McKenzie, M. (2016). Generation of Xenomitochondrial Embryonic Stem Cells for the Production of Live Xenomitochondrial Mice. In: McKenzie, M. (eds) Mitochondrial DNA. Methods in Molecular Biology, vol 1351. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3040-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3040-1_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3039-5

  • Online ISBN: 978-1-4939-3040-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics