Skip to main content

Assessing Tumor Angiogenesis in Histological Samples

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1430))

Abstract

Tumor neovascularization acquires their vessels through a number of processes including angiogenesis, vasculogenesis, vascular remodeling, intussusception, and possibly vascular mimicry in certain tumors. The end result of the tumor vasculature has been quantified by counting the number of immunohistochemically identified microvessels in areas of maximal vascularity, so-called hot spot. Other techniques have been developed such as Chalkley counting and the use of image analysis systems that are robust and reproducible as well as being more objective. Many of the molecular pathways that govern tumor neovascularization have been identified and many reagents are now available to study these tissue sections. These include angiogenic growth factors and their receptors and cell adhesion molecules, proteases, and markers of activated, proliferating, cytokine-stimulated, or angiogenic vessels, such as CD105. It is also possible to differentiate quiescent from active vessels. Other reagents that can identify proteins involved in microenvironmental influences such as hypoxia have also been generated. Although the histological assessment of tumor vascularity is used mostly in the research context, it may also have clinical applications if appropriate methodology and trained observers perform the studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Folkman J (1971) Tumour angiogenesis: therapeutic implications. N Engl J Med 285:82–86

    Article  Google Scholar 

  2. Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histological grading. J Natl Cancer Inst 48:347–356

    CAS  PubMed  Google Scholar 

  3. Mlynek M, van Beunigen D, Leder L-D, Streffer C (1985) Measurement of the grade of vascularisation in histological tumour tissue sections. Br J Cancer 52:945–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Svrivastava A, Laidler P, Davies R, Horgan K, Hughes L (1988) The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. Am J Pathol 133:419–423

    Google Scholar 

  5. Porschen R, Classen S, Piontek M, Borchard F (1994) Vascularization of carcinomas of the esophagus and its correlation with tumor proliferation. Cancer Res 54(2):587–591

    CAS  PubMed  Google Scholar 

  6. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8

    Article  CAS  PubMed  Google Scholar 

  7. Fox SB (1997) Tumour angiogenesis and prognosis. Histopathology 30(3):294–301

    Article  CAS  PubMed  Google Scholar 

  8. Fox S, Harris A (2004) The biology of breast tumor angiogenesis. In: Harris J, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 441–458

    Google Scholar 

  9. Folkman J (1990) What is the evidence that tumours are angiogenesis dependent. J Natl Cancer Inst 82:4–6

    Article  CAS  PubMed  Google Scholar 

  10. Pezzella F, Pastorin OU, Tagliabue E, Andreola S, Sozzi G, Gasparini G, Menard S, Gatter K, Harris A, Fox S et al (1996) Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 151(5):1417–1423

    Google Scholar 

  11. Pezzella F (2000) Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Breast Cancer Progression Working Party. Lancet 355(9217):1787–1788

    Article  Google Scholar 

  12. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998

    Article  CAS  PubMed  Google Scholar 

  13. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18(38):5356–5362

    Article  CAS  PubMed  Google Scholar 

  14. Vermeulen PB, Colpaert C, Salgado R, Royers R, Hellemans H, Van Den Heuvel E, Goovaerts G, Dirix LY, Van Marck E (2001) Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol 195(3):336–342

    Article  CAS  PubMed  Google Scholar 

  15. Shirakawa K, Wakasugi H, Heike Y, Watanabe I, Yamada S, Saito K, Konishi F (2002) Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer 99(6):821–828

    Article  CAS  PubMed  Google Scholar 

  16. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    Article  CAS  PubMed  Google Scholar 

  17. Gunsilius E, Duba HC, Petzer AL, Kahler CM, Grunewald K, Stockhammer G, Gabl C, Dirnhofer S, Clausen J, Gastl G (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355(9216):1688–1691

    Article  CAS  PubMed  Google Scholar 

  18. Rafii S (2000) Circulating endothelial precursors: mystery, reality, and promise [comment]. J Clin Invest 105(1):17–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18(14):3964–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7(11):1194–1201

    Article  CAS  PubMed  Google Scholar 

  21. Patan S, Munn LL, Jain RK (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51(2):260–272

    Article  CAS  PubMed  Google Scholar 

  22. Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50(1–2):1–15

    Article  CAS  PubMed  Google Scholar 

  23. Fox S, Gatter K, Bicknell R, Going J, Stanton P, Cooke T, Harris A (1993) Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res 53:9161–9163

    Google Scholar 

  24. Kakolyris S, Giatromanolaki A, Koukourakis M, Leigh IM, Georgoulias V, Kanavaros P, Sivridis E, Gatter KC, Harris AL (1999) Assessment of vascular maturation in non-small cell lung cancer using a novel basement membrane component, LH39: correlation with p53 and angiogenic factor expression. Cancer Res 59(21):5602–5607

    CAS  PubMed  Google Scholar 

  25. Kakolyris S, Fox SB, Koukourakis M, Giatromanolaki A, Brown N, Leek RD, Taylor M, Leigh IM, Gatter KC, Harris AL (2000) Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39. Br J Cancer 82(4):844–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sood AK, Seftor EA, Fletcher MS, Gardner LM, Heidger PM, Buller RE, Seftor RE, Hendrix MJ (2001) Molecular determinants of ovarian cancer plasticity. Am J Pathol 158(4):1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q (2013) Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 49(18):3914–3923

    Article  PubMed  Google Scholar 

  28. Folberg R, Hendrix MJ, Maniotis AJ (2000) Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 156(2):361–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McDonald DM, Munn L, Jain RK (2000) Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol 156(2):383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Warren B (1979) The vascular morphology of tumors. In: Peterson H (ed) Tumor blood circulation. CRC Press, Boca Raton, FL, pp 1–47

    Google Scholar 

  31. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A 97(26):14608–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, Belien JA, de Waal RM, Van Marck E, Magnani E et al (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38(12):1564–1579

    Article  CAS  PubMed  Google Scholar 

  33. Barbareschi M, Weidner N, Gasparini G, Morelli L, Forti S, Eccher C, Fina P, Caffo O, Leonardi E, Mauri F et al (1995) Microvessel quantitation in breast carcinomas. Appl Immunochem 3(2):75–84

    Google Scholar 

  34. Chalkley H (1943) Method for the quantitative morphological analysis of tissues. J Natl Cancer Inst 4:47–53

    Google Scholar 

  35. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84(24):1875–1887

    Article  CAS  PubMed  Google Scholar 

  36. Fox SB, Leek RD, Bliss J, Mansi JL, Gusterson B, Gatter KC, Harris AL (1997) Association of tumor angiogenesis with bone marrow micrometastases in breast cancer patients. J Natl Cancer Inst 89(14):1044–1049

    Article  CAS  PubMed  Google Scholar 

  37. Burrows FJ, Thorpe PE (1994) Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol Ther 64(1):155–174

    Article  CAS  PubMed  Google Scholar 

  38. Fox S, Harris A (1997) Markers of tumor angiogenesis: clinical applications in prognosis and anti-angiogenic therapy. Invest New Drugs 15:15–28

    Article  CAS  PubMed  Google Scholar 

  39. Dales JP, Garcia S, Andrac L, Carpentier S, Ramuz O, Lavaut MN, Allasia C, Bonnier P, Charpin C (2004) Prognostic significance of angiogenesis evaluated by CD105 expression compared to CD31 in 905 breast carcinomas: correlation with long-term patient outcome. Int J Oncol 24(5):1197–1204

    PubMed  Google Scholar 

  40. Yao Y, Kubota T, Takeuchi H, Sato K (2005) Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors: comparison with an anti-CD31 monoclonal antibody. Neuropathology 25(3):201–206

    Article  PubMed  Google Scholar 

  41. Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, Syro LV, Kovacs K, Lloyd RV (2011) Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 31(6):2283–2290

    CAS  PubMed  Google Scholar 

  42. Miyata Y, Sagara Y, Watanabe S, Asai A, Matsuo T, Ohba K, Hayashi T, Sakai H (2013) CD105 is a more appropriate marker for evaluating angiogenesis in urothelial cancer of the upper urinary tract than CD31 or CD34. Virchows Arch 463(5):673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Minhajat R, Mori D, Yamasaki F, Sugita Y, Satoh T, Tokunaga O (2006) Organ-specific endoglin (CD105) expression in the angiogenesis of human cancers. Pathol Int 56(12):717–723

    Article  CAS  PubMed  Google Scholar 

  44. Sica G, Lama G, Anile C, Geloso MC, La Torre G, De Bonis P, Maira G, Lauriola L, Jhanwar-Uniyal M, Mangiola A (2011) Assessment of angiogenesis by CD105 and nestin expression in peritumor tissue of glioblastoma. Int J Oncol 38(1):41–49

    PubMed  Google Scholar 

  45. Saroufim A, Messai Y, Hasmim M, Rioux N, Iacovelli R, Verhoest G, Bensalah K, Patard JJ, Albiges L, Azzarone B et al (2014) Tumoral CD105 is a novel independent prognostic marker for prognosis in clear-cell renal cell carcinoma. Br J Cancer 110(7):1778–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosen LS, Gordon MS, Robert F, Matei DE (2014) Endoglin for targeted cancer treatment. Curr Oncol Rep 16(2):365

    Article  PubMed  CAS  Google Scholar 

  47. Matsuda Y, Hagio M, Ishiwata T (2013) Nestin: a novel angiogenesis marker and possible target for tumor angiogenesis. World J Gastroenterol 19(1):42–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Teranishi N, Naito Z, Ishiwata T, Tanaka N, Furukawa K, Seya T, Shinji S, Tajiri T (2007) Identification of neovasculature using nestin in colorectal cancer. Int J Oncol 30(3):593–603

    CAS  PubMed  Google Scholar 

  49. Ishiwata T, Matsuda Y, Naito Z (2011) Nestin in gastrointestinal and other cancers: effects on cells and tumor angiogenesis. World J Gastroenterol 17(4):409–418

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yamahatsu K, Matsuda Y, Ishiwata T, Uchida E, Naito Z (2012) Nestin as a novel therapeutic target for pancreatic cancer via tumor angiogenesis. Int J Oncol 40(5):1345–1357

    CAS  PubMed  Google Scholar 

  51. Kruger K, Stefansson IM, Collett K, Arnes JB, Aas T, Akslen LA (2013) Microvessel proliferation by co-expression of endothelial nestin and Ki-67 is associated with a basal-like phenotype and aggressive features in breast cancer. Breast 22(3):282–288

    Article  CAS  PubMed  Google Scholar 

  52. Smolle J, Soyer HP, Hofmann-Wellenhof R, Smolle-Juettner FM, Kerl H (1989) Vascular architecture of melanocytic skin tumors. Pathol Res Pract 185:740–745

    Article  CAS  PubMed  Google Scholar 

  53. Cockerell CJ, Sonnier G, Kelly L, Patel S (1994) Comparative analysis of neovascularisation in primary cutaneous melanoma and Spitz nevus. Am J Dermatopathol 16:9–13

    Article  CAS  PubMed  Google Scholar 

  54. Folberg R, Rummelt V, Ginderdeuren R-V, Hwang T, Woolson R, Pe’er J, Gruman L (1993) The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 100:1389–1398

    Article  CAS  PubMed  Google Scholar 

  55. Pezzella F, Dibacco A, Andreola S, Nicholson AG, Pastorino U, Harris AL (1996) Angiogenesis in primary lung-cancer and lung secondaries. Eur J Cancer 32A:2494–2500

    Article  CAS  PubMed  Google Scholar 

  56. Balsat C, Signolle N, Goffin F, Delbecque K, Plancoulaine B, Sauthier P, Samouelian V, Beliard A, Munaut C, Foidart JM et al (2014) Improved computer-assisted analysis of the global lymphatic network in human cervical tissues. Mod Pathol 27(6):887–898

    Article  PubMed  Google Scholar 

  57. Wakui S (1992) Epidermal growth factor receptor at endothelial cell and pericyte interdigitation in human granulation tissue. Microvasc Res 44(3):255–262

    Article  CAS  PubMed  Google Scholar 

  58. Visscher D, Smilanetz S, Drozdowicz S, Wykes S (1993) Prognostic significance of image morphometric microvessel enumeration in breast carcinoma. Anal Quant Cytol 15:88–92

    CAS  Google Scholar 

  59. Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol 177(3):275–283

    Article  CAS  PubMed  Google Scholar 

  60. Simpson J, Ahn C, Battifora H, Esteban J (1994) Vascular surface area as a prognostic indicator in invasive breast carcinoma. Lab Invest 70:22A

    Google Scholar 

  61. Brawer MK, Deering RE, Brown M, Preston SD, Bigler SA (1994) Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 73(3):678–687

    Article  CAS  PubMed  Google Scholar 

  62. Furusato M, Wakui S, Sasaki H, Ito K, Ushigome S (1994) Tumour angiogenesis in latent prostatic carcinoma. Br J Cancer 70(6):1244–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bigler S, Deering R, Brawer M (1993) Comparisons of microscopic vascularity in benign and malignant prostate tissue. Hum Pathol 24:220–226

    Article  CAS  PubMed  Google Scholar 

  64. Williams JK, Carlson GW, Cohen C, Derose PB, Hunter S, Jurkiewicz MJ (1994) Tumor angiogenesis as a prognostic factor in oral cavity tumors. Am J Surg 168(5):373–380

    Article  CAS  PubMed  Google Scholar 

  65. Wesseling P, van der Laak JA, Link M, Teepen HL, Ruiter DJ (1998) Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol 29(4):352–358

    Article  CAS  PubMed  Google Scholar 

  66. Charpin C, Devictor B, Bergeret D, Andrac L, Boulat J, Horschowski N, Lavaut MN, Piana L (1995) CD31 quantitative immunocytochemical assays in breast carcinomas. Correlation with current prognostic factors. Am J Clin Pathol 103(4):443–448

    Article  CAS  PubMed  Google Scholar 

  67. Van der Laak J, Westphal J, Schalkwijk L, Pahplazt M, Ruiter D, de Waal R, de Wilde P (1998) An improved procedure to quantify tumour vascularity using true colour image analysis: comparison with the manual hot-spot procedure in a human melanoma xenograft model. J Pathol 184:136–143

    Article  PubMed  Google Scholar 

  68. Karslioglu Y, Yigit N, Onguru O (2014) Chalkley method in the angiogenesis research and its automation via computer simulation. Pathol Res Pract 210(3):161–168

    Article  PubMed  Google Scholar 

  69. Hansen TF, Nielsen BS, Jakobsen A, Sorensen FB (2013) Visualising and quantifying angiogenesis in metastatic colorectal cancer: a comparison of methods and their predictive value for chemotherapy response. Cell Oncol 36(4):341–350

    Article  CAS  Google Scholar 

  70. Mohammed ZM, Orange C, McMillan DC, Mallon E, Doughty JC, Edwards J, Going JJ (2013) Comparison of visual and automated assessment of microvessel density and their impact on outcome in primary operable invasive ductal breast cancer. Hum Pathol 44(8):1688–1695

    Article  PubMed  Google Scholar 

  71. Asioli S, Eusebi V, Gaetano L, Losi L, Bussolati G (2008) The pre-lymphatic pathway, the roots of the lymphatic system in breast tissue: a 3D study. Virchows Arch 453(4):401–406

    Article  PubMed  Google Scholar 

  72. Di Ieva A (2010) Angioarchitectural morphometrics of brain tumors: are there any potential histopathological biomarkers? Microvasc Res 80(3):522–533

    Article  PubMed  Google Scholar 

  73. Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool for quantitative analysis of vascular networks. PLoS One 6(11):e27385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mikalsen LT, Dhakal HP, Bruland OS, Naume B, Borgen E, Nesland JM, Olsen DR (2013) The clinical impact of mean vessel size and solidity in breast carcinoma patients. PLoS One 8(10):e75954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McCarthy SA, Kuzu I, Gatter KC, Bicknell R (1991) Heterogeneity of the endothelial cell and its role in organ preference of tumour metastasis. Trends Pharmacol Sci 12(12):462–467

    Article  CAS  PubMed  Google Scholar 

  76. Carnochan P, Briggs JC, Westbury G, Davies AJ (1991) The vascularity of cutaneous melanoma: a quantitative histological study of lesions 0.85–1.25 mm in thickness. Br J Cancer 64(1):102–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vesalainen S, Lipponen P, Talja M, Alhava E, Syrjanen K (1994) Tumor vascularity and basement membrane structure as prognostic factors in T1-2M0 prostatic adenocarcinoma. Anticancer Res 14:709–714

    CAS  PubMed  Google Scholar 

  78. Van Hoef ME, Knox WF, Dhesi SS, Howell A, Schor AM (1993) Assessment of tumour vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur J Cancer 29A(8):1141–1145

    PubMed  Google Scholar 

  79. Hall NR, Fish DE, Hunt N, Goldin RD, Guillou PJ, Monson JR (1992) Is the relationship between angiogenesis and metastasis in breast cancer real? Surg Oncol 1(3):223–229

    Article  CAS  PubMed  Google Scholar 

  80. Ottinetti A, Sapino A (1988) Morphometric evaluation of microvessels surrounding hyperplastic and neoplastic mammary lesions. Breast Cancer Res Treat 11:241–248

    Article  CAS  PubMed  Google Scholar 

  81. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23(7):755–761

    Article  CAS  PubMed  Google Scholar 

  82. Bundred N, Bowcott M, Walls J, Faragher E, Knox F (1994) Angiogenesis in breast cancer predicts node metastasis and survival. Br J Surg 81:768 (Abstract)

    Article  Google Scholar 

  83. Li VW, Folkerth RD, Watanabe H, Yu C, Rupnick M, Barnes P, Scott RM, Black PM, Sallan SE, Folkman J (1994) Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 344(8915):82–86

    Article  CAS  PubMed  Google Scholar 

  84. Parums D, Cordell J, Micklem K, Heryet A, Gatter K, Mason D (1990) JC70: a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J Clin Pathol 43:752–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Horak ER, Harris AL, Stuart N, Bicknell R (1993) Angiogenesis in breast cancer. Regulation, prognostic aspects, and implications for novel treatment strategies. Ann N Y Acad Sci 698(71):71–84

    Article  CAS  PubMed  Google Scholar 

  86. Sightler H, Borowsky A, Dupont W, Page D, Jensen R (1994) Evaluation of tumor angiogenesis as a prognostic marker in breast cancer. Lab Invest 70:22A (abstract)

    Google Scholar 

  87. Barnhill RL, Fandrey K, Levy MA, Mihm MJ, Hyman B (1992) Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab Invest 67(3):331–337

    CAS  PubMed  Google Scholar 

  88. Sahin A, Sneige N, Singletary E, Ayala A (1992) Tumor angiogenesis detected by Factor-VIII immunostaining in node-negative breast carcinoma (NNBC): a possible predictor of distant metastasis. Mod Pathol 5:17A (abstract)

    Google Scholar 

  89. Axelsson K, Ljung BM, Moore DH II, Thor AD, Chew KL, Edgerton SM, Smith HS, Mayall BH (1995) Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma [see comments]. J Natl Cancer Inst 87(13):997–1008

    Article  CAS  PubMed  Google Scholar 

  90. Fox SB, Leek RD, Smith K, Hollyer J, Greenall M, Harris AL (1994) Tumor angiogenesis in node-negative breast carcinomas—relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res Treat 29(1):109–116

    Article  CAS  PubMed  Google Scholar 

  91. Hansen S, Grabau DA, Sorensen FB, Bak M, Vach W, Rose C (2000) The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin Cancer Res 6(1):139–146

    CAS  PubMed  Google Scholar 

  92. Dickinson AJ, Fox SB, Persad RA, Hollyer J, Sibley GN, Harris AL (1994) Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. Br J Urol 74(6):762–766

    Article  CAS  PubMed  Google Scholar 

  93. Paweletz N, Knierim M (1989) Tumor-related angiogenesis. Crit Rev Oncol Hematol 9(3):197–242

    Article  CAS  PubMed  Google Scholar 

  94. Blood CH, Zetter BR (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim Biophys Acta 1032(1):89–118

    CAS  PubMed  Google Scholar 

  95. Brown LF, Berse B, Jackman RW, Tognazzi K, Guidi AJ, Dvorak HF, Senger DR, Connolly JL, Schnitt SJ (1995) Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 26(1):86–91

    Article  CAS  PubMed  Google Scholar 

  96. Moghaddam A, Bicknell R (1992) Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity. Biochemistry 31(48):12141–12146

    Article  CAS  PubMed  Google Scholar 

  97. Anandappa SY, Winstanley JH, Leinster S, Green B, Rudland PS, Barraclough R (1994) Comparative expression of fibroblast growth factor mRNAs in benign and malignant breast disease. Br J Cancer 69(4):772–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknell R, Harris AL (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57(5):963–969

    CAS  PubMed  Google Scholar 

  99. Garver RJ, Radford DM, Donis KH, Wick MR, Milner PG (1994) Midkine and pleiotrophin expression in normal and malignant breast tissue. Cancer 74(5):1584–1590

    Article  PubMed  Google Scholar 

  100. Smith K, Fox SB, Whitehouse R, Taylor M, Greenall M, Clarke J, Harris AL (1999) Upregulation of basic fibroblast growth factor in breast carcinoma and its relationship to vascular density, oestrogen receptor, epidermal growth factor receptor and survival. Ann Oncol 10(6):707–713

    Article  CAS  PubMed  Google Scholar 

  101. Wong SY, Purdie AT, Han P (1992) Thrombospondin and other possible related matrix proteins in malignant and benign breast disease. An immunohistochemical study. Am J Pathol 140(6):1473–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Visscher DW, DeMattia F, Ottosen S, Sarkar FH, Crissman JD (1995) Biologic and clinical significance of basic fibroblast growth factor immunostaining in breast carcinoma. Mod Pathol 8:665–670

    CAS  PubMed  Google Scholar 

  103. Ivy SP, Wick JY, Kaufman BM (2009) An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol 6(10):569–579

    Article  CAS  PubMed  Google Scholar 

  104. Mittal K, Ebos J, Rini B (2014) Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond. Semin Oncol 41(2):235–251

    Article  CAS  PubMed  Google Scholar 

  105. FDA approval for bevacizumab. http://www.cancer.gov/cancertopics/druginfo/fda-bevacizumab

  106. Proposal to withdraw approval for the breast cancer indication for Avastin (bevacizumab). http://www.fda.gov/downloads/NewsEvents/Newsroom/UCM280546.pdf

  107. FDA approval for sunitinib malate. http://www.cancer.gov/cancertopics/druginfo/fda-sunitinib-malate

  108. FDA approval for sorafenib tosylate. http://www.cancer.gov/cancertopics/druginfo/fda-sorafenib-tosylate

  109. Toi M, Kondo S, Suzuki H, Yamamoto Y, Inada K, Imazawa T, Taniguchi T, Tominaga T (1996) Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77(6):1101–1106

    Article  CAS  PubMed  Google Scholar 

  110. Lantzsch T, Hefler L, Krause U, Kehl A, Goepel C, Koelbl H, Dunst J, Lampe D (2002) The correlation between immunohistochemically-detected markers of angiogenesis and serum vascular endothelial growth factor in patients with breast cancer. Anticancer Res 22(3):1925–1928

    CAS  PubMed  Google Scholar 

  111. Valkovic T, Dobrila F, Melato M, Sasso F, Rizzardi C, Jonjic N (2002) Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 440(6):583–588

    Article  CAS  PubMed  Google Scholar 

  112. Linderholm B, Tavelin B, Grankvist K, Henriksson R (1998) Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J Clin Oncol 16(9):3121–3128

    CAS  PubMed  Google Scholar 

  113. Gasparini G, Toi M, Gion M, Verderio P, Dittadi R, Hanatani M, Matsubara I, Vinante O, Bonoldi E, Boracchi P et al (1997) Prognostic-significance of vascular endothelial growth-factor protein in node-negative breast-carcinoma. J Natl Cancer Inst 89(2):139–147

    Article  CAS  PubMed  Google Scholar 

  114. Obermair A, Bancher-Todesca D, Bilgi S, Kaider A, Kohlberger P, Mullauer-Ertl S, Leodolter S, Gitsch G (1997) Correlation of vascular endothelial growth factor expression and microvessel density in cervical intraepithelial neoplasia. J Natl Cancer Inst 89(16):1212–1217

    Article  CAS  PubMed  Google Scholar 

  115. Manders P, Beex LV, Tjan-Heijnen VC, Geurts-Moespot J, Van Tienoven TH, Foekens JA, Sweep CG (2002) The prognostic value of vascular endothelial growth factor in 574 node-negative breast cancer patients who did not receive adjuvant systemic therapy. Br J Cancer 87(7):772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Eppenberger U, Kueng W, Schlaeppi JM, Roesel JL, Benz C, Mueller H, Matter A, Zuber M, Luescher K, Litschgi M et al (1998) Markers of tumor angiogenesis and proteolysis independently define high- and low-risk subsets of node-negative breast cancer patients. J Clin Oncol 16(9):3129–3136

    CAS  PubMed  Google Scholar 

  117. Coradini D, Boracchi P, Daidone MG, Pellizzaro C, Miodini P, Ammatuna M, Tomasic G, Biganzoli E (2001) Contribution of vascular endothelial growth factor to the Nottingham prognostic index in node-negative breast cancer. Br J Cancer 85(6):795–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Toi M, Bando H, Ogawa T, Muta M, Hornig C, Weich HA (2002) Significance of vascular endothelial growth factor (VEGF)/soluble VEGF receptor-1 relationship in breast cancer. Int J Cancer 98(1):14–18

    Article  CAS  PubMed  Google Scholar 

  119. Kilvaer TK, Smeland E, Valkov A, Sorbye SW, Bremnes RM, Busund LT, Donnem T (2014) The VEGF- and PDGF-family of angiogenic markers have prognostic impact in soft tissue sarcomas arising in the extremities and trunk. BMC Clin Pathol 14(1):5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. El-Gohary YM, Silverman JF, Olson PR, Liu YL, Cohen JK, Miller R, Saad RS (2007) Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma. Am J Clin Pathol 127(4):572–579

    Article  CAS  PubMed  Google Scholar 

  121. Saad RS, Liu YL, Nathan G, Celebrezze J, Medich D, Silverman JF (2004) Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol 17(2):197–203

    Article  CAS  PubMed  Google Scholar 

  122. Georgiadou D, Sergentanis TN, Sakellariou S, Filippakis GM, Zagouri F, Vlachodimitropoulos D, Psaltopoulou T, Lazaris AC, Patsouris E, Zografos GC (2014) VEGF and Id-1 in pancreatic adenocarcinoma: prognostic significance and impact on angiogenesis. Eur J Surg Oncol 40(10):1331–1337

    Article  CAS  PubMed  Google Scholar 

  123. Clara CA, Marie SK, de Almeida JR, Wakamatsu A, Oba-Shinjo SM, Uno M, Neville M, Rosemberg S (2014) Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1alpha in human glioblastoma. Neuropathology 34(4):343–352

    CAS  PubMed  Google Scholar 

  124. Gunningham S, Currie M, Cheng H, Scott P, Robinson B, Harris A, Fox S (2000) The short form of the alternatively spliced flt-4 but not its ligand VEGF-C is related to lymph node metastasis in human breast cancers. Clin Cancer Res 6:4278–4286

    CAS  PubMed  Google Scholar 

  125. Kinoshita J, Kitamura K, Kabashima A, Saeki H, Tanaka S, Sugimachi K (2001) Clinical significance of vascular endothelial growth factor-C (VEGF-C) in breast cancer. Breast Cancer Res Treat 66(2):159–164

    Article  CAS  PubMed  Google Scholar 

  126. Gunningham SP, Currie MJ, Han C, Robinson BA, Scott PA, Harris AL, Fox SB (2001) VEGF-B expression in human primary breast cancers is associated with lymph node metastasis but not angiogenesis. J Pathol 193(3):325–332

    Article  CAS  PubMed  Google Scholar 

  127. Onogawa S, Kitadai Y, Tanaka S, Kuwai T, Kimura S, Chayama K (2004) Expression of VEGF-C and VEGF-D at the invasive edge correlates with lymph node metastasis and prognosis of patients with colorectal carcinoma. Cancer Sci 95(1):32–39

    Article  CAS  PubMed  Google Scholar 

  128. Yokoyama Y, Charnock-Jones DS, Licence D, Yanaihara A, Hastings JM, Holland CM, Emoto M, Sakamoto A, Sakamoto T, Maruyama H et al (2003) Expression of vascular endothelial growth factor (VEGF)-D and its receptor, VEGF receptor 3, as a prognostic factor in endometrial carcinoma. Clin Cancer Res 9(4):1361–1369

    CAS  PubMed  Google Scholar 

  129. Nakamura Y, Yasuoka H, Tsujimoto M, Yang Q, Imabun S, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2003) Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up. Clin Cancer Res 9(2):716–721

    CAS  PubMed  Google Scholar 

  130. Kurebayashi J, Otsuki T, Kunisue H, Mikami Y, Tanaka K, Yamamoto S, Sonoo H (1999) Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn J Cancer Res 90(9):977–981

    Article  CAS  PubMed  Google Scholar 

  131. Engels K, Fox SB, Whitehouse RM, Gatter KC, Harris AL (1997) Up-regulation of thymidine phosphorylase expression is associated with a discrete pattern of angiogenesis in ductal carcinomas in situ of the breast. J Pathol 182(4):414–420

    Article  CAS  PubMed  Google Scholar 

  132. Fox SB, Westwood M, Moghaddam A, Comley M, Turley H, Whitehouse RM, Bicknell R, Gatter KC, Harris AL (1996) The angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase is up-regulated in breast cancer epithelium and endothelium. Br J Cancer 73(3):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Toi M, Hoshina S, Taniguchi T, Yamamoto Y, Ishitsuka H, Tominaga T (1995) Expression of platelet derived endothelial cell growth factor/thymidine phosphorylase in human breast cancer. Int J Cancer 64:79–82

    Article  CAS  PubMed  Google Scholar 

  134. Toi M, Ueno T, Matsumoto H, Saji H, Funata N, Koike M, Tominaga T (1999) Significance of thymidine phosphorylase as a marker of protumor monocytes in breast cancer. Clin Cancer Res 5(5):1131–1137

    CAS  PubMed  Google Scholar 

  135. Yang Q, Barbareschi M, Mori I, Mauri F, Muscara M, Nakamura M, Nakamura Y, Yoshimura G, Sakurai T, Caffo O et al (2002) Prognostic value of thymidine phosphorylase expression in breast carcinoma. Int J Cancer 97(4):512–517

    Article  CAS  PubMed  Google Scholar 

  136. Kanzaki A, Takebayashi Y, Bando H, Eliason JF, Watanabe Si S, Miyashita H, Fukumoto M, Toi M, Uchida T (2002) Expression of uridine and thymidine phosphorylase genes in human breast carcinoma. Int J Cancer 97(5):631–635

    Article  CAS  PubMed  Google Scholar 

  137. Nagaoka H, Iino Y, Takei H, Morishita Y (1998) Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in macrophages correlates with tumor angiogenesis and prognosis in invasive breast cancer. Int J Oncol 13(3):449–454

    CAS  PubMed  Google Scholar 

  138. Toi M, Yamamoto Y, Inada K, Hoshina S, Suzuki H, Kondo S, Tominaga T (1995) Vascular endothelial growth factor and platelet-derived endothelial growth factor are frequently co-expressed in highly vascularized breast cancer. Clin Cancer Res 1:961–964

    CAS  PubMed  Google Scholar 

  139. O’Brien T, Fox S, Dickinson A, Turley H, Westwood M, Moghaddam A, Gatter K, Bicknell R, Harris A (1996) Expression of the angiogenic factor thymidine phosphorylase/platelet derived endothelial cell growth factor in primary bladder cancers. Cancer Res 56:4799–4804

    PubMed  Google Scholar 

  140. O’Brien TS, Smith K, Cranston D, Fuggle S, Bicknell R, Harris AL (1995) Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br J Urol 76(3):311–314

    Article  PubMed  Google Scholar 

  141. Adams J, Carder PJ, Downey S, Forbes MA, MacLennan K, Allgar V, Kaufman S, Hallam S, Bicknell R, Walker JJ et al (2000) Vascular endothelial growth factor (VEGF) in breast cancer: comparison of plasma, serum, and tissue VEGF and microvessel density and effects of tamoxifen. Cancer Res 60(11):2898–2905

    CAS  PubMed  Google Scholar 

  142. Freeman A, Morris LS, Mills AD, Stoeber K, Laskey RA, Williams GH, Coleman N (1999) Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin Cancer Res 5(8):2121–2132

    CAS  PubMed  Google Scholar 

  143. Stoeber K, Swinn R, Prevost AT, de Clive-Lowe P, Halsall I, Dilworth SM, Marr J, Turner WH, Bullock N, Doble A et al (2002) Diagnosis of genito-urinary tract cancer by detection of minichromosome maintenance 5 protein in urine sediments. J Natl Cancer Inst 94(14):1071–1079

    Article  CAS  PubMed  Google Scholar 

  144. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60(5):1388–1393

    CAS  PubMed  Google Scholar 

  145. Barresi V, Branca G, Caffo M, Caltabiano R, Ieni A, Vitarelli E, Lanzafame S, Tuccari G (2014) Immuno-expression of endoglin and smooth muscle actin in the vessels of brain metastases. Is there a rational for anti-angiogenic therapy? Int J Mol Sci 15(4):5663–5679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Francavilla C, Maddaluno L, Cavallaro U (2009) The functional role of cell adhesion molecules in tumor angiogenesis. Semin Cancer Biol 19(5):298–309

    Article  CAS  PubMed  Google Scholar 

  147. Bentley K, Franco CA, Philippides A, Blanco R, Dierkes M, Gebala V, Stanchi F, Jones M, Aspalter IM, Cagna G et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16(4):309–321

    Article  CAS  PubMed  Google Scholar 

  148. Schadendorf D, Heidel J, Gawlik C, Suter L, Czarnetzki BM (1995) Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selectin on intratumoral vessels. J Natl Cancer Inst 87:366–371

    Article  CAS  PubMed  Google Scholar 

  149. Kageshita T, Hamby CV, Hirai S, Kimura T, Ono T, Ferrone S (2000) Alpha(v)beta3 expression on blood vessels and melanoma cells in primary lesions: differential association with tumor progression and clinical prognosis. Cancer Immunol Immunother 49(6):314–318

    Article  CAS  PubMed  Google Scholar 

  150. Kageshita T, Yoshii A, Kimura T, Kuriya N, Ono T, Tsujisaki M, Imai K, Ferrone S (1993) Clinical relevance of ICAM-1 expression in primary lesions and serum of patients with malignant melanoma. Cancer Res 53:4927–4932

    CAS  PubMed  Google Scholar 

  151. Banks RE, Gearing AJ, Hemingway IK, Norfolk DR, Perren TJ, Selby PJ (1993) Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br J Cancer 68(1):122–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA (1995) Antiintegrin β3αv blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96:1815–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, Ranieri G, Miceli R, Cheresh DA (1998) Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res 4(11):2625–2634

    CAS  PubMed  Google Scholar 

  154. Heidenreich A, Rawal SK, Szkarlat K, Bogdanova N, Dirix L, Stenzl A, Welslau M, Wang G, Dawkins F, de Boer CJ et al (2013) A randomized, double-blind, multicenter, phase 2 study of a human monoclonal antibody to human alphanu integrins (intetumumab) in combination with docetaxel and prednisone for the first-line treatment of patients with metastatic castration-resistant prostate cancer. Ann Oncol 24(2):329–336

    Article  CAS  PubMed  Google Scholar 

  155. Manegold C, Vansteenkiste J, Cardenal F, Schuette W, Woll PJ, Ulsperger E, Kerber A, Eckmayr J, von Pawel J (2013) Randomized phase II study of three doses of the integrin inhibitor cilengitide versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer. Invest New Drugs 31(1):175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. O’Day S, Pavlick A, Loquai C, Lawson D, Gutzmer R, Richards J, Schadendorf D, Thompson JA, Gonzalez R, Trefzer U et al (2011) A randomised, phase II study of intetumumab, an anti-alphav-integrin mAb, alone and with dacarbazine in stage IV melanoma. Br J Cancer 105(3):346–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kim KB, Prieto V, Joseph RW, Diwan AH, Gallick GE, Papadopoulos NE, Bedikian AY, Camacho LH, Hwu P, Ng CS et al (2012) A randomized phase II study of cilengitide (EMD 121974) in patients with metastatic melanoma. Melanoma Res 22(4):294–301

    Article  CAS  PubMed  Google Scholar 

  158. Scaringi C, Minniti G, Caporello P, Enrici RM (2012) Integrin inhibitor cilengitide for the treatment of glioblastoma: a brief overview of current clinical results. Anticancer Res 32(10):4213–4223

    CAS  PubMed  Google Scholar 

  159. Stupp R, Hegi ME, Gorlia T, Perry JR, Erridge S, Reardons DA, Markivskyy A, Wick W, Hong YK, Weller M (2013) Standard chemotherapy +/− cilengitide in newly diagnosed glioblastoma (GBM): updated results and subgroup analyses of the international randomized phase III CENTRIC trial (EORTC trial #26071-22072/Canadian Brain Tumor Consortium). In: European Multidisciplinary Cancer Congress 2013, vol 49. Eur J Cancer, Amsterdam, p S775

    Google Scholar 

  160. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21(7):1104–1117

    Article  CAS  PubMed  Google Scholar 

  161. John A, Tuszynski G (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7(1):14–23

    Article  CAS  PubMed  Google Scholar 

  162. Haas TL, Madri JA (1999) Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc Med 9(3–4):70–77

    Article  CAS  PubMed  Google Scholar 

  163. Lochter A, Bissell MJ (1999) An odyssey from breast to bone: multi-step control of mammary metastases and osteolysis by matrix metalloproteinases. APMIS 107(1):128–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Parfyonova YV, Plekhanova OS, Tkachuk VA (2002) Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry 67(1):119–134

    CAS  PubMed  Google Scholar 

  165. Nielsen BS, Sehested M, Kjeldsen L, Borregaard N, Rygaard J, Dano K (1997) Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest 77(4):345–355

    CAS  PubMed  Google Scholar 

  166. Fox S, Taylor M, Grondahl-Hansen J, Kakolyris S, Gatter K, Harris A (2001) Plasminogen activator inhibitor-1 as a measure of vascular remodelling in breast cancer. J Pathol 195:236–243

    Article  CAS  PubMed  Google Scholar 

  167. Grøndahl-Hansen J, Christensen IJ, Rosenquist C, Brunner N, Mouridsen HT, Danø K, Blichert-Toft M (1993) High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 53(11):2513–2521

    PubMed  Google Scholar 

  168. Grøndahl-Hansen J, Peters HA, van Putten WL, Look MP, Pappot H, Rønne E, Danø K, Klijn JGM, Brunner N, Foekens JA (1995) Prognostic significance of the receptor for urokinase plasminogen activator in breast cancer. Clin Cancer Res 1:1079–1087

    PubMed  Google Scholar 

  169. Grøndahl-Hansen J, Hilsenbeck SG, Christensen IJ, Clark GM, Osborne CK, Brünner N (1997) Prognostic significance of PAI-1 and uPA in cytosolic extracts obtained from node-positive breast cancer patients. Breast Cancer Res Treat 43(2):153–163

    Article  PubMed  Google Scholar 

  170. Janicke F, Pache L, Schmitt M, Ulm K, Thomssen C, Prechtl A, Graeff H (1994) Both the cytosols and detergent extracts of breast cancer tissues are suited to evaluate the prognostic impact of the urokinase-type plasminogen activator and its inhibitor, plasminogen activator inhibitor type 1. Cancer Res 54(10):2527–2530

    CAS  PubMed  Google Scholar 

  171. Foekens JA, Look MP, Peters HA, van Putten WL, Portengen H, Klijn JG (1995) Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. J Natl Cancer Inst 87(10):751–756

    Article  CAS  PubMed  Google Scholar 

  172. Duffy MJ (2002) Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem 48(8):1194–1197

    CAS  PubMed  Google Scholar 

  173. Harbeck N, Schmitt M, Kates RE, Kiechle M, Zemzoum I, Janicke F, Thomssen C (2002) Clinical utility of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 determination in primary breast cancer tissue for individualized therapy concepts. Clin Breast Cancer 3(3):196–200

    Article  CAS  PubMed  Google Scholar 

  174. Warren B, Greenblatt M, Kommineni V (1972) Tumor angiogenesis: ultrastructure of endothelial cells in mitosis. Br J Exp Pathol 53:216–224

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132

    CAS  PubMed  Google Scholar 

  176. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465

    CAS  PubMed  Google Scholar 

  177. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  CAS  PubMed  Google Scholar 

  178. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157(2):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH et al (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60(24):7075–7083

    CAS  PubMed  Google Scholar 

  180. Loncaster JA, Harris AL, Davidson SE, Logue JP, Hunter RD, Wycoff CC, Pastorek J, Ratcliffe PJ, Stratford IJ, West CM (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61(17):6394–6399

    CAS  PubMed  Google Scholar 

  181. Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, Semenza GL, van Diest PJ, van der Wall E (2003) Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97(6):1573–1581

    Article  PubMed  Google Scholar 

  182. Swinson DE, Jones JL, Richardson D, Wykoff C, Turley H, Pastorek J, Taub N, Harris AL, O’Byrne KJ (2003) Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in non-small-cell lung cancer. J Clin Oncol 21(3):473–482

    Article  CAS  PubMed  Google Scholar 

  183. Qin C, Wilson C, Blancher C, Taylor M, Safe S, Harris AL (2001) Association of ARNT splice variants with estrogen receptor-negative breast cancer, poor induction of vascular endothelial growth factor under hypoxia, and poor prognosis. Clin Cancer Res 7(4):818–823

    CAS  PubMed  Google Scholar 

  184. Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, Jakesz R, Kubista E, Birner P, Oberhuber G et al (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8(6):1831–1837

    CAS  PubMed  Google Scholar 

  185. Okada K, Osaki M, Araki K, Ishiguro K, Ito H, Ohgi S (2005) Expression of hypoxia-inducible factor (HIF-1alpha), VEGF-C and VEGF-D in non-invasive and invasive breast ductal carcinomas. Anticancer Res 25(4):3003–3009

    CAS  PubMed  Google Scholar 

  186. Schoppmann SF, Fenzl A, Schindl M, Bachleitner-Hofmann T, Nagy K, Gnant M, Horvat R, Jakesz R, Birner P (2006) Hypoxia inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat 99(2):135–141

    Article  CAS  PubMed  Google Scholar 

  187. Hasebe T, Sasaki S, Imoto S, Mukai K, Yokose T, Ochiai A (2002) Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: a prospective observational study. Mod Pathol 15(5):502–516

    Article  PubMed  Google Scholar 

  188. Hasebe T, Tsuda H, Hirohashi S, Shimosato Y, Iwai M, Imoto S, Mukai K (1996) Fibrotic focus in invasive ductal carcinoma: an indicator of high tumor aggressiveness. Jpn J Cancer Res 87(4):385–394

    Article  CAS  PubMed  Google Scholar 

  189. Van den Eynden GG, Colpaert CG, Couvelard A, Pezzella F, Dirix LY, Vermeulen PB, Van Marck EA, Hasebe T (2007) A fibrotic focus is a prognostic factor and a surrogate marker for hypoxia and (lymph)angiogenesis in breast cancer: review of the literature and proposal on the criteria of evaluation. Histopathology 51(4):440–451

    Article  PubMed  Google Scholar 

  190. Mujtaba SS, Ni YB, Tsang JY, Chan SK, Yamaguchi R, Tanaka M, Tan PH, Tse GM (2013) Fibrotic focus in breast carcinomas: relationship with prognostic parameters and biomarkers. Ann Surg Oncol 20(9):2842–2849

    Article  PubMed  Google Scholar 

  191. Jitsuiki Y, Hasebe T, Tsuda H, Imoto S, Tsubono Y, Sasaki S, Mukai K (1999) Optimizing microvessel counts according to tumor zone in invasive ductal carcinoma of the breast. Mod Pathol 12(5):492–498

    CAS  PubMed  Google Scholar 

  192. Colpaert CG, Vermeulen PB, Fox SB, Harris AL, Dirix LY, Van Marck EA (2003) The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res Treat 81(2):137–147

    Article  CAS  PubMed  Google Scholar 

  193. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14(3):159–172

    Article  CAS  PubMed  Google Scholar 

  194. Kato T, Prevo R, Steers G, Roberts H, Leek RD, Kimura T, Kameoka S, Nishikawa T, Kobayashi M, Jackson DG et al (2005) A quantitative analysis of lymphatic vessels in human breast cancer, based on LYVE-1 immunoreactivity. Br J Cancer 93(10):1168–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Baluk P, McDonald DM (2008) Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci 1131:1–12

    Article  PubMed  Google Scholar 

  196. Mouta Carreira C, Nasser SM, di Tomaso E, Padera TP, Boucher Y, Tomarev SI, Jain RK (2001) LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res 61(22):8079–8084

    CAS  PubMed  Google Scholar 

  197. Johnson LA, Prevo R, Clasper S, Jackson DG (2007) Inflammation-induced uptake and degradation of the lymphatic endothelial hyaluronan receptor LYVE-1. J Biol Chem 282(46):33671–33680

    Article  CAS  PubMed  Google Scholar 

  198. Wang J, Guo Y, Wang B, Bi J, Li K, Liang X, Chu H, Jiang H (2012) Lymphatic microvessel density and vascular endothelial growth factor-C and -D as prognostic factors in breast cancer: a systematic review and meta-analysis of the literature. Mol Biol Rep 39(12):11153–11165

    Article  CAS  PubMed  Google Scholar 

  199. Wang J, Li K, Wang B, Bi J (2012) Lymphatic microvessel density as a prognostic factor in non-small cell lung carcinoma: a meta-analysis of the literature. Mol Biol Rep 39(5):5331–5338

    Article  CAS  PubMed  Google Scholar 

  200. Kurahara H, Takao S, Shinchi H, Maemura K, Mataki Y, Sakoda M, Hayashi T, Kuwahata T, Minami K, Ueno S et al (2010) Significance of lymphangiogenesis in primary tumor and draining lymph nodes during lymphatic metastasis of pancreatic head cancer. J Surg Oncol 102(7):809–815

    Article  PubMed  Google Scholar 

  201. Lee SK, Cho EY, Kim WW, Kim SH, Hur SM, Kim S, Choe JH, Kim JH, Kim JS, Lee JE et al (2010) The prediction of lymph node metastasis in ductal carcinoma in situ with microinvasion by assessing lymphangiogenesis. J Surg Oncol 102(3):225–229

    Article  PubMed  Google Scholar 

  202. Saad RS, Kordunsky L, Liu YL, Denning KL, Kandil HA, Silverman JF (2006) Lymphatic microvessel density as prognostic marker in colorectal cancer. Mod Pathol 19(10):1317–1323

    Article  CAS  PubMed  Google Scholar 

  203. Minardi D, d’Anzeo G, Lucarini G, Filosa A, Zizzi A, Simonetti O, Polito M Jr, Offidani AM, Di Primio R, Montironi R et al (2011) D2-40 immunoreactivity in penile squamous cell carcinoma: a marker of aggressiveness. Hum Pathol 42(11):1596–1602

    Article  CAS  PubMed  Google Scholar 

  204. Rudno-Rudzinska J, Kielan W, Grzebieniak Z, Dziegiel P, Donizy P, Mazur G, Knakiewicz M, Frejlich E, Halon A (2013) High density of peritumoral lymphatic vessels measured by D2-40/podoplanin and LYVE-1 expression in gastric cancer patients: an excellent prognostic indicator or a false friend? Gastric Cancer 16(4):513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zorgetto VA, Silveira GG, Oliveira-Costa JP, Soave DF, Soares FA, Ribeiro-Silva A (2013) The relationship between lymphatic vascular density and vascular endothelial growth factor A (VEGF-A) expression with clinical-pathological features and survival in pancreatic adenocarcinomas. Diagn Pathol 8:170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. de Jong JS, van Diest PJ, Baak JP (1995) Heterogeneity and reproducibility of microvessel counts in breast cancer. Lab Invest 73(6):922–926

    PubMed  Google Scholar 

  207. Martin L, Holcombe C, Green B, Leinster SJ, Winstanley J (1997) Is a histological section representative of whole tumour vascularity in breast cancer? Br J Cancer 76(1):40–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Chen B, Fang WK, Wu ZY, Xu XE, Wu JY, Fu JH, Yao XD, Huang JH, Chen JX, Shen JH et al (2014) The prognostic implications of microvascular density and lymphatic vessel density in esophageal squamous cell carcinoma: comparative analysis between the traditional whole sections and the tissue microarray. Acta Histochem 116(4):646–653

    Article  PubMed  Google Scholar 

  209. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847

    Article  CAS  PubMed  Google Scholar 

  210. LeBaron MJ, Crismon HR, Utama FE, Neilson LM, Sultan AS, Johnson KJ, Andersson EC, Rui H (2005) Ultrahigh density microarrays of solid samples. Nat Methods 2(7):511–513

    Article  CAS  PubMed  Google Scholar 

  211. Generali D, Buffa FM, Berruti A, Brizzi MP, Campo L, Bonardi S, Bersiga A, Allevi G, Milani M, Aguggini S et al (2009) Phosphorylated ERα, HIF-1α, and MAPK signaling as predictors of primary endocrine treatment response and resistance in patients with breast cancer. J Clin Oncol 27(2):227–234

    Article  PubMed  Google Scholar 

  212. Liu X, Minin V, Huang Y, Seligson DB, Horvath S (2004) Statistical methods for analyzing tissue microarray data. J Biopharm Stat 14(3):671–685

    Article  PubMed  Google Scholar 

  213. Zhang DH, Salto-Tellez M, Chiu LL, Shen L, Koay ES (2003) Tissue microarray study for classification of breast tumors. Life Sci 73(25):3189–3199

    Article  CAS  PubMed  Google Scholar 

  214. Protopapa E, Delides GS, Revesz L (1993) Vascular density and the response of breast carcinomas to mastectomy and adjuvant chemotherapy. Eur J Cancer 29A(8):1141–1145

    Google Scholar 

  215. Fox S, Engels K, Comley M, Whitehouse R, Turley H, Gatter K, Harris A (1997) Relationship of elevated tumour thymidine phosphorylase in node positive breast carcinomas to the effects of adjuvant CMF. Ann Oncol 8:271–275

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pang, JM., Jene, N., Fox, S.B. (2016). Assessing Tumor Angiogenesis in Histological Samples. In: Martin, S., Hewett, P. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 1430. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3628-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3628-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3626-7

  • Online ISBN: 978-1-4939-3628-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics