Skip to main content

Enrichment of Golgi Membranes from Triticum aestivum (Wheat) Seedlings

  • Protocol
  • First Online:
Isolation of Plant Organelles and Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1511))

Abstract

The Golgi apparatus is an essential component in the plant secretory pathway. The enrichment of Golgi membranes from plant tissue is fundamental to the study of this structurally complex organelle. The utilization of density centrifugation for the enrichment of Golgi membranes is still the most widely employed isolation technique. Generally, the procedure requires optimization depending on the plant tissue being employed. Here we provide a detailed enrichment procedure that has previously been used to characterize cell wall biosynthetic complexes from wheat seedlings. We also outline several downstream analyses procedures, including nucleoside diphosphatase assays, immunoblotting, and finally localization of putative Golgi proteins by fluorescent tags.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song W, Henquet MGL, Mentink RA et al (2011) N-glycoproteomics in plants: perspectives and challenges. J Proteomics 74:1463–1474

    Article  CAS  PubMed  Google Scholar 

  2. Van den Steen P, Rudd PM, Dwek RA et al (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33:151–208

    Article  PubMed  Google Scholar 

  3. Dick G, Akslen-Hoel LK, Grondahl F et al (2012) Proteoglycan synthesis and Golgi organization in polarized epithelial cells. J Histochem Cytochem 60:926–935

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  5. Maccioni HJF, Quiroga R, Spessott W (2011) Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett 585:1691–1698

    Article  CAS  PubMed  Google Scholar 

  6. Brandizzi F, Barlowe C (2013) Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14:382–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wartosch L, Bright NA, Luzio JP (2015) Lysosomes. Curr Biol 25:R315–R316

    Article  CAS  PubMed  Google Scholar 

  8. Mayinger P (2011) Signaling at the Golgi. Cold Spring Harb Perspect Biol 3:a005314

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dröscher A (1998) Camillo Golgi and the discovery of the Golgi apparatus. Histochem Cell Biol 109:425–430

    Article  PubMed  Google Scholar 

  10. Golgi C (1898) Intorno alla struttura della cellula nervosa. Arch Ital Biol 30:60–71

    Google Scholar 

  11. Dalton AJ, Felix MD (1953) Studies on the Golgi substance of the epithelial cells of the epididymis and duodenum of the mouse. Am J Anat 92:277–305

    Article  CAS  PubMed  Google Scholar 

  12. Morré DJ, Mollenhauer HH (1974) In: Robards AW (ed) Dynamic aspects of plant infrastructure. McGraw-Hill, New York, USA, pp 84–137

    Google Scholar 

  13. Morré DJ, Mollenhauer HH (1964) Isolation of Golgi apparatus from plant cells. J Cell Biol 23:295–305

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cheetham RD, Morré DJ, Yunghans WN (1970) Isolation of a Golgi apparatus-rich fraction from rat liver. II Enzymatic characterization and comparison with other cell fractions. J Cell Biol 44:492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morré DJ, Hamilton RL, Mollenhauer HH et al (1970) Isolation of a Golgi apparatus-rich fraction from rat liver: I. Method and morphology. J Cell Biol 44:484–491

    Article  PubMed  PubMed Central  Google Scholar 

  16. Taylor RS, Jones SM, Dahl RH et al (1997) Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell 8:1911–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Forsmark A, Rossi G, Wadskog I et al (2011) Quantitative proteomics of yeast post-Golgi vesicles reveals a discriminating role for Sro7p in protein secretion. Traffic 12:740–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeng W, Jiang N, Nadella R et al (2010) A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiol 154:78–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boevink P, Oparka K, Cruz SS et al (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  CAS  PubMed  Google Scholar 

  20. Dunkley TPJ, Watson R, Griffin JL et al (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3:1128–1134

    Article  CAS  PubMed  Google Scholar 

  21. Nikolovski N, Rubtsov D, Segura MP et al (2012) Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. Plant Physiol 160:1037–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parsons HT, Weinberg CS, Macdonald LJ et al (2013) Golgi enrichment and proteomic analysis of developing Pinus radiata xylem by free-flow electrophoresis. PLoS One 8:e84669

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parsons HT, Christiansen K, Knierim B et al (2012) Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel targets involved in plant cell wall biosynthesis. Plant Physiol 159:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parsons HT, González Fernández-Niño SM, Heazlewood JL (2014) In: Jorrín Novo JV, Komatsu S, Weckwerth W, Weinkoop S (eds) Plant proteomics: methods and protocols, vol 1072, 2nd edn. Humana Press, New York, pp 527–539

    Chapter  Google Scholar 

  25. Dhugga KS, Barreiro R, Whitten B et al (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    Article  CAS  PubMed  Google Scholar 

  26. Munoz P, Norambuena L, Orellana A (1996) Evidence for a UDP-glucose transporter in Golgi apparatus-derived vesicles from pea and its possible role in polysaccharide biosynthesis. Plant Physiol 112:1585–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mikami S, Hori H, Mitsui T (2001) Separation of distinct compartments of rice Golgi complex by sucrose density gradient centrifugation. Plant Sci 161:665–675

    Article  CAS  Google Scholar 

  28. Sturm A, Johnson KD, Szumilo T et al (1987) Subcellular-localization of glycosidases and glycosyltransferases involved in the processing of N-Linked oligosaccharides. Plant Physiol 85:741–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang YD, Elamawi R, Bubeck J et al (2005) Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites. Plant Cell 17:1513–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Earley KW, Haag JR, Pontes O et al (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  31. Chiu TY, Christiansen K, Moreno I et al (2012) AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. Plant Cell Physiol 53:1913–1925

    Article  CAS  PubMed  Google Scholar 

  32. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Australia Research Council (ARC) to the ARC Centre of Excellence in Plant Cell Walls [CE110001007] and the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. JLH is supported by an ARC Future Fellowship [FT130101165].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Heazlewood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zeng, W., Ebert, B., Parsons, H.T., Rautengarten, C., Bacic, A., Heazlewood, J.L. (2017). Enrichment of Golgi Membranes from Triticum aestivum (Wheat) Seedlings. In: Taylor, N., Millar, A. (eds) Isolation of Plant Organelles and Structures. Methods in Molecular Biology, vol 1511. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6533-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6533-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6531-1

  • Online ISBN: 978-1-4939-6533-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics