Skip to main content

Spray Drying of Bioactives

  • Chapter
  • First Online:
Book cover Engineering Foods for Bioactives Stability and Delivery

Part of the book series: Food Engineering Series ((FSES))

Abstract

Spray drying is a common unit operation for converting solids from liquid materials into powders for preservation, ease of storage, transport and handling, and economic considerations. Although most often considered as a dehydration process, spray drying can also be effective as an encapsulation method when it is used for complexing a core material with a protective matrix, which is ideally inert to the core material being encapsulated. Unlike other encapsulation techniques, it offers the unique advantage of producing microcapsules in a cost-effective one-step continuous process. This chapter describes the principles and processing techniques of spray drying for encapsulation of food bioactives, including probiotics, polyphenols, enzymes and peptides, vitamins, and essential fatty acids. The storage stability of spray dried bioactives and challenges from both a research and industrial perspective are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abee T, Wouters JA (1999) Microbial stress response in minimal processing. Int J Food Microbiol 50:65–91

    Article  CAS  Google Scholar 

  • Adhikari B, Howes T, Wood BJ, Bhandari BR (2009) The effect of low molecular weight surfactants and proteins on surface stickiness of sucrose during powder formation through spray drying. J Food Eng 94:135–143

    Article  CAS  Google Scholar 

  • Adler M, Lee G (1999) Stability and surface activity of lactate dehydrogenase in spray-dried trehalose. J Pharm Sci 88:99–208

    Google Scholar 

  • Al C, Al T (2009) Ultrasonic vs. classical nozzles in probiotics encapsulation applications, XVIIth international conference on bioencapsulation. Groningen, The Netherlands; 24–26 Sept 2009. Poster P98, pp 1–4

    Google Scholar 

  • Alexander JW (1998) Immunonutrition: the role of ω-3 fatty acids. Nutrition 14:627–633

    Article  CAS  Google Scholar 

  • Alvarez-Olmos MI, Oberhelman RA (2001) Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin Infect Dis 32:1567–1575

    Article  CAS  Google Scholar 

  • Ameri M, Maa YF (2006) Spray drying of biopharmaceuticals: stability and process considerations. Drying Technol 24:763–768

    Article  CAS  Google Scholar 

  • Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18:240–251

    Article  CAS  Google Scholar 

  • Ananta E, Volkert M, Knorr D (2005) Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int Dairy J 15:399–409

    Article  CAS  Google Scholar 

  • Augustin MA, Sanguansri L, Bode O (2006) Maillard reaction products as encapsulants for fish oil powders. J Food Sci 71(2):E25–E32

    Article  CAS  Google Scholar 

  • Augustin MA, Hemar Y (2009) Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912

    Article  CAS  Google Scholar 

  • Baik M-Y, Suhendro EL, Nawar WW, McClements DJ, Decker EA, Chinachoti P (2004) Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. J Am Oil Chem Soc 81:355–360

    Article  CAS  Google Scholar 

  • Beindorff CM, Zuidam NJ (2010) Microencapsulation of fish oil. In: Zuidam NJ, Shimoni E (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 161–185

    Chapter  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2009) Food Chemistry. Springer, Berlin, pp 403–420

    Google Scholar 

  • Bell LN (2001) Stability testing of nutraceuticals and functional foods. In: Wildman REC (ed) Handbook of nutraceuticals and functional foods. CRC Press, New York, pp 501–516

    Google Scholar 

  • Bhandari B, Patel K, Chen XD (2008) Chapter 4. Spray drying of food materials: process and product characteristics. In: Chen XD, Mujumdar AS (eds) Drying technology in food processing. Blackwell, London, pp 113–159

    Google Scholar 

  • Biesalski HK et al (2009) Bioactive compounds: definition and assessment of activity. Nutr 25:1202–1205

    Article  Google Scholar 

  • Bimbenet JJ, Bonazzi C, Dumoulin E (2002) Drying of foodstuffs. Drying. In: Proceeding of the 13th international drying symposium, pp 64–80

    Google Scholar 

  • Broadhead J, Rouan SKE, Rhodes CT (1992) The spray drying of pharmaceuticals. Drug Dev Ind Pharm 18:1169–1206

    Article  CAS  Google Scholar 

  • Broadhead J, Rouan SKE, Hau I, Rhodes CT (1994) The effect of process and formulation variables on the properties of spray-dried β-galactosidase. J Pharm Pharmacol 46:458–467

    Article  CAS  Google Scholar 

  • Chávez BE, Ledeboer AM (2007) Drying of probiotics: optimization of formulation and process to enhance storage survival. Drying Technol 25:1193–1201

    Article  CAS  Google Scholar 

  • Chen XD, Patel KC (2007) Micro-organism inactivation during drying of small droplets or thin-layer slabs—a critical review of existing kinetics models and an appraisal of the drying rate dependent model. J Food Eng 82:1–10

    Article  Google Scholar 

  • Chiou D, Langrish TAG (2007) Development and characterisation of novel nutraceuticals with spray drying technology. J Food Eng 82:84–91

    Article  Google Scholar 

  • Corcoran BM, Ross RP, Fitzgerald GF, Stanton C (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96:1024–1039

    Article  CAS  Google Scholar 

  • da Silva Malheiros P, Daroit DJ, Brandelli A (2010) Food applications of liposome-encapsulated antimicrobial peptides. Trends Food Sci Technol 6:284–292

    Google Scholar 

  • Daeman ALH, van der Stege HJ (1982) The destruction of enzymes and bacteria during the spary drying of milk and whey. 2. The effect of the drying conditions. Neth Milk Dairy J 36:211–229

    Google Scholar 

  • de la Rica R, Matsui H (2010) Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev 39:3499–3509

    Article  CAS  Google Scholar 

  • de Vos P, Faas MM, Spasojevic M et al (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20:292–302

    Article  CAS  Google Scholar 

  • Desai KGH, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Drying Technol 23:1361–1394

    Article  CAS  Google Scholar 

  • Desal KG, Park HJ (2006) Effect of manufacturing parameters on the characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres prepared by spray drying. J Microencapsulation 23:91–103

    Article  CAS  Google Scholar 

  • Desal KG, Liu C, Park HJ (2006) Characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres as affected by chitosan molecular weight. J Microencapsulation 23:79–90

    Article  CAS  Google Scholar 

  • Desobry SA, Netto FM, Labuza TP (1997) Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J Food Sci 62:1158–1162

    Article  CAS  Google Scholar 

  • Drusch S, Serfert Y, Scampicchio M, Schmidt-Hansberg B, Schwarz K (2007) Impact of physicochemical characteristics on the oxidative stability of fish oil microencapsulated by spray-drying. J Agric Food Chem 55:11044–11051

    Article  CAS  Google Scholar 

  • Dubernet C, Benoit JP (1986) La microencapsulation: Ses techniques et ses applications en biologie. L’actualité chimique, pp 19–28

    Google Scholar 

  • Ersus S, Yurdagel U (2007) Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng 80:805–812

    Article  CAS  Google Scholar 

  • Esposito E, Cervellati F, Menegatti E, Nastruzzi C, Cortesi R (2002) Spray dried Eudragit microparticles as encapsulation devices for vitamin C. Int J Pharm 242:329–334

    Article  CAS  Google Scholar 

  • Faldt P, Berganstahl B (1994) The surface composition of spray-dried protein-lactose powders. Colloids Surf 90:183–190

    Article  Google Scholar 

  • Fang X, Shima M, Adachi S (2005) Effects of drying conditions on the oxidation of lineoleic acid encapsulated with gum arabic by spray-drying. Food Sci Technol Res 11:380–384

    Article  CAS  Google Scholar 

  • Fang ZX, Bhandari B (2010) Encapsulation of polyphenols—a review. Trends Food Sci Technol 21:510–523

    Article  CAS  Google Scholar 

  • Fang ZX, Bhandari B (2011) Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem 129:1139–1147

    Article  CAS  Google Scholar 

  • Fang ZX, Bhandari B (2012a) Chapter 4, Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation. In: Garti N, McClements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing Ltd, Harvard, pp 73–109

    Chapter  Google Scholar 

  • Fang ZX, Bhandari B (2012b) Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Res Int 48:478–483

    Article  CAS  Google Scholar 

  • Fang ZX, Wang RB, Bhandari B (2013) Effects of type and concentration of proteins on the recovery of spray dried sucrose powder. Drying Technol 31:1643–1652

    Article  CAS  Google Scholar 

  • Favaro-Trindade CS, Santana AS, Monterrey-Quintero ES, Trindade, MA, Netto FM (2010) The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloid 24:336–340

    Google Scholar 

  • Feldthusen JJ, Auweter H, Habich A, Lüddecke E, Pfeiffer A-M (2005) Method for producing dry powders of one or several carotenoids. WO 2005(075385):A2

    Google Scholar 

  • Fleming RS (1921) The spray process of drying. J Ind Eng Chem 13:447–449

    Article  CAS  Google Scholar 

  • Fogler BB, Kleinschmidt RV (1938) Spray drying. Ind Eng Chem 30:1372–1384

    Article  CAS  Google Scholar 

  • Fritzen-Freire CB, Prudencio ES, Amboni RDMC, Pinto SS, Negrao-Murakami AN, Murakami FS (2011) Microencapsulation of Bifidobacteria by spray drying in the presence of prebiotics. Food Res Int 45:306–312

    Article  CAS  Google Scholar 

  • Fuller R (1992) History and development of probiotics. In: Fuller R (ed) probiotics, The scientific basis. Springer, Edinburgh, pp 1–8

    Google Scholar 

  • Gardiner GE, O’Sullivan E, Kelly J, Auty MAE, Fitzgerald GF, Collins JK, Ross RP, Stanton C (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66:2605–2612

    Article  CAS  Google Scholar 

  • Georgetti SR, Casagrande R, Souza CRF, Oliveira WP, Fonseca MJV (2008) Spray drying of the soybean extract: effects on chemical properties and antioxidant activity. LWT—Food Sci Technol 41:1521–1527

    Article  CAS  Google Scholar 

  • Gharsallaoui A, Roudaut G, Chambin O et al (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121

    Article  CAS  Google Scholar 

  • Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50:213–224

    Article  CAS  Google Scholar 

  • Goodhart RS, Shils ME (1980) Modern nutrition in health and disease (6th edn). Lea and Febinger, Philadelphia, pp 134–138

    Google Scholar 

  • Haslam E, Lilley TH (1988) Natural astringency in foodstuffs: a molecular interpretation. Crit Rev Food Sci Nutr 27:1–40

    Google Scholar 

  • Hogan SA, O’Riordan ED, O’Sullivan M (2003) Microencapsulation and oxidative stability of spray-dried fish oil emulsions. J Microencapsul 20:675–688

    Article  CAS  Google Scholar 

  • Huang L, Mujumdar AS (2006) Numerical study of two-stage horizontal spray dryers using computational fluid dynamics. Drying Technol 24:727–733

    Article  Google Scholar 

  • Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Encapsulation efficiency of food flavours and oils during spray drying. Drying Technol 26:816–835

    Article  Google Scholar 

  • Jimenez M, García HS, Beristain CI (2004) Spray-drying microencapsulation and oxidative stability of conjugated linoleic acid. Eur Food Res Technol 219:588–592

    Article  CAS  Google Scholar 

  • Kailasapathy K, Chin JC (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 78:80–88

    Article  CAS  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications Curr Opin Biotechnol 13:345–351

    Article  CAS  Google Scholar 

  • Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9:1309–1323

    Article  CAS  Google Scholar 

  • Kolanowski W, Jaworska D, Weissbrodt J, Kunz B (2007) Sensory assessment of microencapsulated fish oil powder. J Am Oil Chem Soc 84:37–45

    Article  CAS  Google Scholar 

  • Kolanowski W, Ziolkowski M, Weissbrodt J, Kunz B, Laufenberg G (2006) Micro encapsulation of fish oil by spray drying-impact on oxidative stability. Part I. Eur Food Res Technol 222:336–342

    Article  CAS  Google Scholar 

  • Kosaraju SL, D’ath L, Lawrence A (2006) Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydr Polym 64:163–167

    Article  CAS  Google Scholar 

  • Kosaraju SL, Labbett D, Emin M, Konczak I, Lundin L (2008) Delivering polyphenols for healthy ageing. Nutr Diet 65:S48–S52

    Article  Google Scholar 

  • Kris-Etherton PM et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71–88

    Article  Google Scholar 

  • Kurozawa LE, Park KJ, Hubinger MD (2011) Spray drying of chicken meat protein hydrolysate: Influence of process conditions on powder property and dryer performance. Drying Technol 29:163–173

    Article  CAS  Google Scholar 

  • Lee SH, Heng D, Ng WK, Chan HK, Tan RBH (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403:192–200

    Article  CAS  Google Scholar 

  • Leuenberger BH, Schlegel B, Voelker KM (2008) Process for the manufacture of a powder containing carotenoids. WO 2008(098694):A1

    Google Scholar 

  • Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74:79–86

    Article  Google Scholar 

  • Liao Y-H, Brown MB, Nazir T, Quader JA, Marti GP (2002) Effects of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme. Pharm Res 19:1847–1853

    Article  CAS  Google Scholar 

  • Lievense LC, Van’t Riet K (1994) Convective drying of bacteria. II. Factors influencing survival. Adv Biocheml Eng biotechnol 51:71–89

    CAS  Google Scholar 

  • Lin CC, Lin SY, Hwang LS (1995) Microencapsulation of squid oil with hydrophilic macromolecules for oxidative and thermal stabilization. J Food Sci 60:36–39

    Article  CAS  Google Scholar 

  • Loksuwan J (2007) Characteristics of microencapsulated b-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloid 21:928–935

    Article  CAS  Google Scholar 

  • Ludescher RD, Shah NK, McCaul CP, Simon KV (2001) Beyond Tg: optical luminescence measurements of molecular mobility in amorphous solid foods. Food Hydrocolloid 15:331–339

    Article  CAS  Google Scholar 

  • Luff F (2007) Omega-3 and micro-encapsulation technology—making functional foods taste better for longer. Food Sci Technol 21:30–31

    CAS  Google Scholar 

  • Maa YF, Hsu CC (1997) Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng 54:503–512

    Article  CAS  Google Scholar 

  • Maa YF, Hsu CC (1996) Effect of high shear on proteins. Biotechnol Bioeng 51:458–465

    Article  CAS  Google Scholar 

  • Maa Y-F, Nguyen P-A, Sweeney T, Shire SJ, Hsu CC (1999) Protein inhalation powders: spray drying vs spray freeze drying Pharma Res 16:249–254

    CAS  Google Scholar 

  • Maa YF, Nguyen PA, Hsu CC (1998) Spray drying of air-sensitive recombinant human growth hormone. J Pharm Sci 87:152–159

    Article  CAS  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Google Scholar 

  • Manojlović V, Nedović VA, Kailasapathy K, Zuidam NJ (2010) Chapter 10 Encapsulation of probiotics for use in food products. In: Zuidam NJ, Shimoni E (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 269–302

    Chapter  Google Scholar 

  • Masters K (1991) The spray drying handbook. Longman Scientific and Technical, New York

    Google Scholar 

  • Matsuno R, Adachi S (1993) Lipid encapsulation technology—techniques and applications to food. Trends Food Sci Technol 4:256–261

    Article  CAS  Google Scholar 

  • Mattila-Sandholm T, Myllarinen P, Crittenden R, Mogensen G, Fonden R, Saarela M (2002) Technological challenges for future probiotic foods. Int Dairy J 12:173–182

    Article  CAS  Google Scholar 

  • Mauriello G, Aponte M, Andolfi R, Moschetti G, Villani F (1999) Spray-drying of bacteriocin-producing lactic acid bacteria. J Food Prot 62:773–777

    Article  CAS  Google Scholar 

  • Millqvist-Fureby A, Malmsten M, Bergenstahl (1999) Spray-drying of trypsin-surface characterisation and activity preservation. Int J Pharm 188:243–253

    Article  CAS  Google Scholar 

  • Minemoto Y, Hakamata K, Adachi S, Matsuno R (2002) Oxidation of linoleic acid encapsulated with gum arabic or maltodextrin by spray-drying. J Microencapsulation 19:181–189

    Article  CAS  Google Scholar 

  • Molina Ortiz SE, Mauri A, Monterrey-Quintero ES, Trindade MA, Santana AS, Favaro-Trindade CS (2009) Production and properties of casein hydrolysate microencapsulated by spray drying with soybean protein isolate. LWT—Food Sci Technol 42:919–923

    Article  CAS  Google Scholar 

  • Montenegro MA, Nunes IL, Mercadante AZ, Borsarelli CD (2007) Photoprotection of vitamins in skimmed milk by an aqueous soluble lycopene-gum arabic microcapsule. J Agric Food Chem 55:323–329

    Article  CAS  Google Scholar 

  • Morgan C, Herman N, White P, Vesey G (2006) Preservation of microorganisms by drying: a review. J Microbiol Methods 66:183–193

    Article  CAS  Google Scholar 

  • Murugesan R, Orsat V (2012) Spray drying for the production of nutraceutical ingredients—a review. Food Bioprocess Technol 5:3–14

    Article  Google Scholar 

  • O’Riordan K, Andrews D, Buckle K, Conway P (2001) Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J Appl Microbiol 91:1059–1066

    Article  Google Scholar 

  • Peighambardoust SH, Tafti AG, Hesari J (2011) Application of spray drying for preservation of lactic acid starter cultures: a review. Trends Food Sci Technol 22:215–224

    Article  CAS  Google Scholar 

  • Percy S (1872) Improvement in drying and concentrating liquid substances by atomizing. US patent US125406 A

    Google Scholar 

  • Pisecky J (1997) Handbook of milk powder manufacture. Niro A/S, Copenhagen

    Google Scholar 

  • Pocobelli G, Peters U, Kristal AR, White E (2009) Use of supplements of multivitamins, vitamin C, and vitamin E in relation to mortality. Am J Epidemiol 170:472–483

    Article  Google Scholar 

  • Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30:37–44

    Article  CAS  Google Scholar 

  • Ré MI (1998) Microencapsulation by spray drying. Drying Technol 16:1195–1236

    Article  Google Scholar 

  • Reineccius GA (2004) Spray-drying of food flavors. Drying Technol 22:1289–1324

    Article  Google Scholar 

  • Reuscher H, Kagan DI, Madhavi DL (2004) Coated carotenoid cyclodextrin complexes. US Patent 2004/0109920 A1

    Google Scholar 

  • Riveros B, Ferrer J, Bórquez R (2009) Spray drying of a vaginal probiotic strain of Lactobacillus acidophilus. Drying Technol 27:123–132

    Article  Google Scholar 

  • Roberfroid MB (2000) Defining functional foods. In: Gibson GR, Williams CM (eds) Functional foods: concept to product. Woodhead Publishing Limited, Cambridge, pp 9–28

    Chapter  Google Scholar 

  • Robert P, Gorena T, Romero N, Sepulveda E, Chávez J, Saéna C (2010) Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int J Food Sci Technol 45:1386–1394

    Article  CAS  Google Scholar 

  • Rodríguez-Huezo ME, Pedroza-Islas R, Prado-Barragán LA, Beristain CI, Vernon-Carter EJ (2004) Microencapsulation by spray drying of multiple emulsions containing carotenoids. J Food Sci 69:E351–E359

    Article  Google Scholar 

  • Saéna C, Tapia S, Chávez J, Robert P (2009) Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem 114:616–622

    Article  CAS  Google Scholar 

  • Sanguansri L, Augustin MA (2001) Encapsulation of food ingredients, WO2001074175

    Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Progr 23:302–315

    Article  CAS  Google Scholar 

  • Santos AB, Favaro-Trindade CS, Grosso CRF (2005) Preparation and characterization of paprika oleoresin microcapsules obtained by spray drying. Ciência e Tecnologia de Alimentos 25:322–326

    Article  Google Scholar 

  • Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306

    Google Scholar 

  • Schmid K, Arpagaus C, Friess W (2011) Evaluation of the nano spray dryer B-90 for pharmaceutical applications. Pharm Dev Technol 16:287–294

    Article  CAS  Google Scholar 

  • Schoubben A, Blasi P, Giovagnoli S, Ricci M, Rossi C (2010) Simple and scalable method for peptide inhalable powder production. Eur J Pharm Sci 39:53–58

    Article  CAS  Google Scholar 

  • Serfert Y, Drusch S, Schwarz K (2009) Chemical stabilisation of oils rich in long-chain polyunsaturated fats during homogenisation, microencapsulation and storage. Food Chem 113:1106–1112

    Article  CAS  Google Scholar 

  • Shaw LA, McClements JD, Decker EA (2007) Spray-dried multilayered emulsions as a delivery method for ω-3 fatty acids into food systems. J Agric Food Chem 55:3112–3119

    Article  CAS  Google Scholar 

  • Shu B, Yu W, Zhao Y, Liu X (2006) Study on microencapsulation of lycopene by spray-drying. J Food Eng 76:664–669

    Article  CAS  Google Scholar 

  • Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70(suppl):560S–5699S

    CAS  Google Scholar 

  • Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2005) Intrinsic tolerance of bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol 99:493–501

    Article  CAS  Google Scholar 

  • Soottitantawat A, Bigeard F, Yoshii H, Furuta T, Ohkawara M, Linko P (2005) Influence of emulsion and powder size on the stability of encapsulated d-limonene by spray drying. Innovative Food Sci Emerg Technol 6:106–114

    Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Google Scholar 

  • To BCS, Etzel MR (1997) Spray drying, freeze drying, or freezing of three different lactic acid bacteria species. J Food Sci 62(576–578):585

    Google Scholar 

  • Touhy KM, Probert HM, Smejkal CW, Gibson GR (2003) Using probiotics and prebiotics to improve gut health. Drug Discov Today 8:692–700

    Article  Google Scholar 

  • Uddin MS, Hawlader MNA, Zhu HJ (2001) Microencapsulation of ascorbic acid: effect of process variables on product characteristics. J Microencapsulation 18:199–209

    Article  CAS  Google Scholar 

  • Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Int J Gen Mol Microbiol 82:187–216

    Google Scholar 

  • Villa-García M, Pedroza-Islas R, Moreno-Terrazas R, De La Rosa-Miranda M and Martínez-Ferez A (2010) Polidextrosa, inulina y aguamiel de maguey y su influencia en la sobrevivencia de Lactobacillus acidophilus microencapsulado en unamezcla de biopolimeros’, Biop Mat-Biopolímeros: Fuentes, transformación, producción y plicaciones innovadoras. Fundación para la Education Superior Internacional, A. C. Electronic book access: www.fesi.org.mx

  • Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313

    Article  CAS  Google Scholar 

  • Weiss G, Knoch A, Laicher A, Stanislaus F, Daniels R (1993) Microencapsulation of ibuprofen by a coacervation process using Eudragit L100-55 as an enteric polymer. Drug Dev Ind Pharm 19:2751–2764

    Article  CAS  Google Scholar 

  • Wu KJ, Chai XH, Chen Y (2005) Microencapsulation of fish oil by simple coacervation of hydroxypropyl methylcellulose. Chin J Chem 23:1569–1572

    Article  CAS  Google Scholar 

  • Zhang L, Mou D, Du Y (2007) Procyanidins: extraction and micro-encapsulation. J Sci Food Agric 87:2192–2197

    Article  CAS  Google Scholar 

  • Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam NJ, Shimoni E (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 3–29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiang Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fang, Z., Bhandari, B. (2017). Spray Drying of Bioactives. In: Roos, Y., Livney, Y. (eds) Engineering Foods for Bioactives Stability and Delivery. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6595-3_10

Download citation

Publish with us

Policies and ethics