Skip to main content

Instrumentation and Experimental Techniques

  • Chapter
  • First Online:
Advanced Transmission Electron Microscopy

Abstract

Many of the instrumental requirements for electron diffraction, particularly the needs for small electron probes, will be found to be similar to those for analytical electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beche A, Rouviere JL, Clement L, Hartmann JM (2009) Improved precision in strain measurement using nanobeam electron diffraction. Appl Phys Lett 95:123114

    Article  Google Scholar 

  • Benner G, Bihr J et al (1990) A new illumination system for an analytical transmission electron microscope using a condenser objective lens. In: Proceedings of XIIth ICEM Seattle. San Francisco Press, SanFrancisco, pp 138–139

    Google Scholar 

  • Benner G, Probst W (1994) Köhler illumination in the tem: fundamentals and advantages. J Microsc 174(3):133–142

    Article  Google Scholar 

  • Berger SD, Salisbury IG et al (1987) Electron energy-loss spectroscopy studies of nanometer-scale structures in alumina produced by intense electron-beam irradiation. Philos Mag B 55:341–358

    Article  Google Scholar 

  • Blackman M (1939) On the intensities of electron diffraction rings. Proc Roy Soc Lond A 173:68–82

    Article  Google Scholar 

  • Botton G (ed) (2007) Analytical electron microscopy. Science of microscopy. Springer, New York

    Google Scholar 

  • Castaing R, Hennequin JF et al (1967) The magnetic prism as an optical system. In: Septier (ed) Focussing of charged particles. Academic, New York, pp 265–293

    Google Scholar 

  • Chee SW, Sivaramakrishnan S, Sharma R, Zuo JM (2011) Electron-beam-induced growth of Tio2 nanostructures. Microsc Microanal 17:274–278

    Article  Google Scholar 

  • Christenson KK, Eades JA (1988) Skew thoughts on parallelism. Ultramicroscopy 26:113–132

    Article  Google Scholar 

  • Cowley JM (1993) Configured detectors for STEM imaging of thin specimens. Ultramicroscopy 49:4–13

    Article  Google Scholar 

  • Cowley JM (1999) Electron nanodiffraction. Microsc Res Tech 46:75–97

    Article  Google Scholar 

  • Cowley JM (2004) Applications of electron nanodiffraction. Micron 35:345

    Article  Google Scholar 

  • Cowley JM, Spence JCH (1981) Convergent beam electron microdiffraction from small crystals. Ultramicroscopy 6:359–366

    Article  Google Scholar 

  • Donev EU, Hastings JT (2009) Electron-beam-induced deposition of platinum from a liquid precursor. Nano Lett 9:2715–2718

    Article  Google Scholar 

  • Dorset DL, Zemlin F (1985) Structural changes in electron-irradiated paraffin crystals at < 15 K and their relevance to lattice imaging experiments. Ultramicroscopy 17(3):229–235

    Article  Google Scholar 

  • Downing KH, Glaeser RM (1986) Improvement in high-resolution image quality of radiation-sensitive specimens achieved with reduced spot size of the electron-beam. Ultramicroscopy 20:269–278

    Article  Google Scholar 

  • Duval P, Hoan N et al (1970) Réalisation d’un dispositif de filtrage en énergie des images de microdiffraction électronique. Nouv Rev d’Optique Appliquée 1:221–228

    Article  Google Scholar 

  • Eades JA (1980) Zone-axis patterns formed by a new double-rocking technique. Ultramicroscopy 5:71–74

    Article  Google Scholar 

  • Eades JA (1984) Zone-axis diffraction patterns by the Tanaka method. J Electron Microsc Tech 1:279–284

    Article  Google Scholar 

  • Eades A (2006) Obtaining TEM images with a uniform deviation parameter. Ultramicroscopy 106:432–438

    Article  Google Scholar 

  • Egerton RF (2005) Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM. Springer, New York

    Book  Google Scholar 

  • Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Egerton RF, Li P et al (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

    Article  Google Scholar 

  • Egerton RF, Wang F et al (2006) Beam-induced damage to thin specimens in an intense electron probe. Microsc Microanal 12:65–71

    Article  Google Scholar 

  • Enge HA (1967) Deflecting magnets. In: Septier A (ed) Focusing of charged particles. Academic Press, New York

    Google Scholar 

  • Evans JE, Jungjohann KL et al (2011) Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11:2809–2813

    Article  Google Scholar 

  • Fujimoto F, Fujita H (1972) Radiation damage induced by channeling of high energy electrons. Phys Status Solidi A 11:K103–K104

    Article  Google Scholar 

  • Fung KK (1984) Large-angle convergent-beam zone axis patterns. Ultramicroscopy 12:243–246

    Article  Google Scholar 

  • Giannuzzi LA, Stevie FA (eds) (2005) Introduction to focused ion beams: instrumentation, theory, techniques and practice. Springer, New York

    Google Scholar 

  • Gjonnes K (1997) On the integration of electron diffraction intensities in the Vincent-Midgley precession technique. Ultramicroscopy 69:1–11

    Article  Google Scholar 

  • Glaeser RM, Taylor KA (1978) Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J Microsc 112:127–138

    Article  Google Scholar 

  • Goodhew PJ (1972) Specimen preparation in materials science, North-Holland

    Google Scholar 

  • Gubbens A, Barfels M, Trevor C, Twesten R, Mooney P, Thomas P, Menon N, Kraus B, Mao C, McGinn B (2010) The GIF quantum, a next generation post-column imaging energy filter. Ultramicroscopy 110:962–970

    Article  Google Scholar 

  • Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic-resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193

    Article  Google Scholar 

  • Hirsch P, Howie A, Nicolson RB, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals. Robert E. Krieger Publishing Company, Malaba

    Google Scholar 

  • Hobbs LW (1978) Radiation damage in electron microscopy of inorganic solids. Ultramicroscopy 3:381–386

    Article  Google Scholar 

  • Hobbs LW (1979) Radiation effects in analysis of inorganic specimens by TEM. In: Hren JJ, Goldstein JI, Joy DC (eds) Introduction to analytical electron microscopy. Springer, Boston

    Google Scholar 

  • Horstmann M, Meyer G (1965) Zeit Fur Physik 182:380

    Article  Google Scholar 

  • Hwang J, Zhang JY, Son J, Stemmer S (2012) Nanoscale quantification of octahedral tilts in perovskite films. Appl Phys Lett 100:191909

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1986) Structural instability of ultrafine particles of metals. Phys Rev Lett 56:616–619

    Article  Google Scholar 

  • Isaacson M, Johnson D, Crewe AV (1973) Electron beam excitation and damage of biological molecules; its implications for specimen damage in electron microscopy. Radiat Res 55:205–224

    Article  Google Scholar 

  • Jeng T-W, Chiu W (1984) Quantitative assessment of radiation damage in a thin protein crystal. J Microsc 136:35–44

    Article  Google Scholar 

  • Jiang N (2016) Beam damage by the induced electric field in transmission electron microscopy. Micron 83:79–92

    Article  Google Scholar 

  • Jiang N, Spence JCH (2012) On the dose-rate threshold of beam damage in TEM. Ultramicroscopy 113:77–82

    Article  Google Scholar 

  • Jiang N, Hembree GG, Spence JCH, Qiu J, de Abajo FJG, Silcox J (2003) Nanoring formation by direct-write inorganic electron-beam lithography. Appl Phys Lett 83:551–553

    Article  Google Scholar 

  • Jordan IK, Rossouw CJ, Vincent R (1991) Effects of energy filtering in lacbed patterns. Ultramicroscopy 35(3–4):237–243

    Article  Google Scholar 

  • Jouffrey B (2009) On the high-voltage stem project in Toulouse. In: Advances in imaging and electron physics: cold field emission and the scanning transmission electron microscope. Academic Press, Amsterdam

    Google Scholar 

  • Kelly PM, Wauchope CJ et al (1994) Calculation of overall tilt angles for a double tilt holder in a TEM. Microsc Res Tech 28:448–451

    Article  Google Scholar 

  • Kim KH, Xing H, Zuo JM, Zhang P, Wang HF (2015) TEM based high resolution and low-dose scanning electron nanodiffraction technique for nanostructure imaging and analysis. Micron 71:39–45

    Article  Google Scholar 

  • Kolar HR, Spence JCH, Alexander H (1996) Observation of moving dislocation kinks and unpinning. Phys Rev Lett 77:4031–4034

    Article  Google Scholar 

  • Kondo Y, Ito T et al (1984) New electron diffraction techniques using electronic hollow-cone illumination. Jpn J Appl Phys 23:L178–L180

    Article  Google Scholar 

  • Krakow W, Howland LA (1976) A method for producing hollow cone illumination electronically in the conventional transmission microscope. Ultramicroscopy 2:53–67

    Article  Google Scholar 

  • Krivanek OL, Gubbens AJ, Dellby N, Meyer CE (1992) Design and 1st applications of a post column imaging filter. Microsc Microanal Microstruct 3:187–199

    Article  Google Scholar 

  • Krivanek OL, Ursin JP, Bacon NJ, Corbin GJ, Dellby N, Hrncirik P, Murfitt MF, Own CS, Szilagyi ZS (2009) High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Philos T Roy Soc A367:3683–3697

    Article  Google Scholar 

  • Lanio S (1986) High-resolution imaging magnetic energy filters with simple structure. Optik 73:99–107

    Google Scholar 

  • LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2010) Position averaged convergent beam electron diffraction: theory and applications. Ultramicroscopy 110:118–125

    Article  Google Scholar 

  • Lichte H, Michael L (2008) Electron holography—basics and applications. Rep Prog Phys 71:016102

    Article  Google Scholar 

  • Mayer J, Giannuzzi LA, Kamino T, Michael J (2007) TEM sample preparation and FIB-induced damage. MRS Bull 32:400–407

    Article  Google Scholar 

  • McKeown J, Spence JCH (2009) The kinematic convergent beam method for solving nanocrystal structures. J Appl Phys 106:074309

    Article  Google Scholar 

  • Morishita S, Yamasaki J, Nakamura K, Kato T, Tanaka N (2008) Diffractive imaging of the dumbbell structure in silicon by spherical-aberration-corrected electron diffraction. Appl Phys Lett 93:183103

    Article  Google Scholar 

  • Morniroli JP (2003) CBED and LACBED analysis of stacking faults and antiphase boundaries. Mater Chem Phys 81:209–213

    Article  Google Scholar 

  • Morniroli JP, Gaillot F (2000) Trace analyses from LACBED patterns. Ultramicroscopy 83:227–243

    Article  Google Scholar 

  • Morniroli JP, Marceau RKW et al (2006) LACBED characterization of dislocation loops. Philos Mag 86:4883–4900

    Article  Google Scholar 

  • Mory C, Colliex C, Cowley JM (1987) Optimum defocus for STEM imaging and microanalysis. Ultramicroscopy 21:171–177

    Article  Google Scholar 

  • Munro E (1975) Design and optimization of magnetic lenses and deflector systems for electron beams. J Vac Sci Technol 12:1146–1150

    Article  Google Scholar 

  • Muray A, Scheinfein M, Isaacson M, Adesida I (1985) Radiolysis and resolution limits of inorganic halide resists. J Vac Sci Technol B 3:367–372

    Article  Google Scholar 

  • Ou HJ, Cowley JM (1988) The surface-reaction of Pd/MgO studied by scanning reflection electron-microscopy. Phys Status Solidi A 107:719–729

    Article  Google Scholar 

  • Own CS, Marks LD, Sinkler W (2005) Electron precession: a guide for implementation. Rev Sci Instrum 76(3):033703

    Google Scholar 

  • Özdöl VB, Srot V, van Aken PA (2012) Sample preparation techniques for transmission electron microscopy. In: Handbook of nanoscopy. Wiley-VCH Verlag GmbH & Co

    Google Scholar 

  • Perez JP, Sirven J, Sequela A, Lacaze JC (1984) Etude, au premier ordre, d’un systeme dispersif, magnetique, symetrique, de type alpha. J Phys (Paris) 45(C2):171–174

    Article  Google Scholar 

  • Reimer L (ed) (1995) Energy-filtering transmission electron microscopy. Springer, New York

    Google Scholar 

  • Reimer L (ed) (1998) Scanning electron microscopy. Springer, New York

    Google Scholar 

  • Reimer L, Kohl H (2008) Transmission electron microscopy (4th). Springer, Berlin

    Google Scholar 

  • Riecke WD, Ruska E (1966) A 100 kV transmission electron microscope with single-field condenser objective. In: 6th international congress for electron microscopy, Kyoto, Japan

    Google Scholar 

  • Rose H (1978) Aberration correction of homogeneous magnetic deflection systems. Optik 51:15–38

    Google Scholar 

  • Rose H (1995) In energy-filtering transmission electron microscopy, Edited by L. Reimer. Springer, Berlin

    Google Scholar 

  • Rose H, Plies E (1974) Design of a magnetic energy analyzer with small aberrations. Optik 40(3):336–341

    Google Scholar 

  • Sinclair R, Ponce FA, Yamashita T, Smith DJ, Camps RA, Freeman LA, Erasmus SJ, Nixon WC, Smith KCA, Catto CJD (1982) Dynamic observation of defect annealing in cdte at lattice resolution. Nature 298:127–131

    Article  Google Scholar 

  • Spence JCH, Cowley JM (1978) Lattice imaging in STEM. Optik 50:129–142

    Google Scholar 

  • Spence JCH, Lynch J (1982) STEM microanalysis by transmission electron-energy loss spectroscopy in crystals. Ultramicroscopy 9:267–276

    Article  Google Scholar 

  • Tafto J, Zhu YM, Wu LJ (1998) A new approach towards measuring structure factors and valence-electron distribution in crystals with large unit cells. Acta Cryst A54:532–542

    Article  Google Scholar 

  • Tanaka M, Terauchi M (1985) Whole pattern in convergent-beam electron diffraction using the hollow-cone beam method. J Electron Microsc 34:52–55

    Google Scholar 

  • Tanaka M, Saito R, Ueno K, Harada Y (1980) Large-angle convergent-beam electron-diffraction. J Electron Microsc 29:408–412

    Google Scholar 

  • Tanaka M, Tsuda K, Terauchi M, Tsuno K, Kaneyama T, Honda T, Ishida M (1999) A new 200 kV Ω-filter electron microscope. J Microsc 194:219–227

    Article  Google Scholar 

  • Terauchi M, Tanaka M (1985) Simultaneous observation of zone-axis pattern and ±g-dark-field pattern in convergent-beam electron-diffraction. J Electron Microsc 34:347–356

    Google Scholar 

  • Treacy MMJ, Gibson JM (1986) The effects of elastic relaxation on transmission electron-microscopy studies of thinned composition-modulated materials. J Vac Sci Technol B 4:1458–1466

    Article  Google Scholar 

  • Tsuno K, Kaneyama T, Honda T, Tsuda K, Terauchi M, Tanaka M (1997) Design and testing of omega mode imaging energy filters at 200 kV. J Electron Microsc 46:357–368

    Article  Google Scholar 

  • Tsuno K, Kaneyama T, Honda T, Ishida Y (1999) Design of omega mode imaging energy filters. Nucl Instrum Meth A 427:187–196

    Article  Google Scholar 

  • Uhlemann S, Rose H (1994) The mandoline filter—a new high-performance imaging filter for sub-eV EFTEM. Optik 96:163–178

    Google Scholar 

  • Uhlemann S, Rose H (1996) Acceptance of imaging energy filters. Ultramicroscopy 63:161–167

    Article  Google Scholar 

  • Urban A (1980) Radiation damage in inorganic materials in the electron microscope. Electron Microsc 4:188

    Google Scholar 

  • Van der Mast KD, Rakels CJ, Le Poole JB (1980) A high quality multipurpose objective lens. In: Proceedings of European congress electron microscope, vol 1. The Hague, pp 72–73

    Google Scholar 

  • Venkatesan BM, Shah AB, Zuo JM, Bashir R (2010) DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Adv Func Mater 20:1266–1275

    Article  Google Scholar 

  • Vincent R (1989) Techniques of convergent beam electron-diffraction. J Electron Microsc Tech 13:40–50

    Article  Google Scholar 

  • Vincent R, Midgley PA (1994) Double conical beam-rocking system for measurement of integrated electron-diffraction intensities. Ultramicroscopy 53:271–282

    Article  Google Scholar 

  • Williams DB, Carter BC (2009) Transmission electron microscopy, a textbook for materials science, 2nd edn. Springer, New York

    Google Scholar 

  • Zhu J, Cowley JM (1983) Micro-diffraction from stacking-faults and twin boundaries in fcc crystals. J Appl Crystallogr 16:171–175

    Article  Google Scholar 

  • Zuo JM, Tao J (2011) Scanning electron nanodiffraction and diffraction imaging. In: Pennycook S, Nellist P (eds) Scanning transmission electron microscopy. Springer, New York

    Google Scholar 

  • Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA (2003) Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300:1419–1421

    Article  Google Scholar 

  • Zuo JM, Gao M, Tao J, Li BQ, Twesten R, Petrov I (2004) Coherent nano-area electron diffraction. Microsc Res Tech 64:347–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Min Zuo or John C. H. Spence .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zuo, J.M., Spence, J.C.H. (2017). Instrumentation and Experimental Techniques. In: Advanced Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6607-3_10

Download citation

Publish with us

Policies and ethics